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Abstract

A tradeable permits market is said to be e¢cient when all a¤ected …rms trade

permits until their marginal costs equal the market price. Detailed …rm-level data

are generally required to perform such an e¢ciency test, yet such information is

rarely available. If …rms face a declining target, however, and are allowed to bank

permits, as has occured recently, aggregated data such as the evolution of the

permits bank is su¢cient to test for either less than optimal market participation

or the exercise of market power. An application to the U.S. sulfur dioxide emission

permits market is provided.
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1 Introduction

It is well known that in theory, a tradeable permits program can ration a given quantity

of a resource (e.g., clean air, lead in gasoline, …sh, water, bus licenses, taxi medallions) at

the least cost to society. The argument rests on the assumption that an e¢cient permits

market will develop in which all a¤ected parties trade permits until their marginal costs

equal the market permits price. Even if an active market for permits develops, however,

when some …rms either do not fully participate in the market (due to, for example,

signi…cant transaction costs, regulatory rulings, or information asymmetries) or able to

exercise market power, this active market will fail to deliver the least-cost solution.1 And

because cost information at the …rm level is generally limited, as in any other market,

it will be di¢cult to test whether or not the permits market is actually delivering the

least-cost solution.

A salient example is the U.S. Acid Rain Program, for which recent studies have

reached opposing conclusions regarding the performance of its sulfur dioxide (SO2) per-

mits market.2 On the one hand, based on price and quantity data from private trans-

actions, Joskow et al. (1998) argued that by mid-1994 the SO2 market has become

reasonably “e¢cient” in the sense that there was a large and increasing volume of trans-

actions taking place at a single price.3 This trading activity was consistent with the

signi…cant cost savings estimated by Ellerman et al. (2000). On the other hand, Carlson

et al. (2000) constructed econometric abatement cost estimates for each individual …rm

in the program and used them to predict the outcome of an e¢cient market for the years

1995 and 1996. They found that the actual cost of compliance was not only more than

50% larger than the cost of their e¢cient market prediction, but it was also larger than

the cost under no trading. They attributed these results to many …rms’ reluctance to

1An active market here is one characterized by signi…cant trading activity and no arbitrage opportu-
nities. If no such market develops, total costs will be higher than the least-cost solution, by de…nition;
except in extremely unlikely situations in which …rms are homogeneous or the regulator has su¢cient
information to allocate permits in the least-cost manner.

2The U.S. Acid Rain program calls for a 50% nationwide reduction in electric utilities’ SO2 emissions.
In this particular program, permits are called allowances. See Ellerman et al. (2000) for more details.

3Note that, because the authors restricted their analysis to trading activity, their de…nition of “e¢-
ciency” is narrower than the de…nition used in this paper.
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fully participate in the market because of poor incentives provided by existing utility

price regulation.4

Clearly, the above …ndings invite further investigation not only of the SO2 program,

but more generally, of alternative ways to test the e¢ciency of a tradeable permits market.

In this regard, an interesting aspect of the SO2 program has not yet been explored that

could shed light on this e¢ciency issue: as a result of a declining SO2 permits cap …rms,

have engaged not only in so-called spatial trading (trading between di¤erent entities

within each period) but also in intertemporal trading, i.e., they are banking permits for

future use. Because the evolution of a permits bank is closely related to the evolution of

an exhaustible resource stock,5 in this paper I draw upon both the literature on tradeable

permits markets and the literature on exhaustible resources to ask whether the evolution

of readily available (aggregate) data such as prices and the permits bank provide enough

information to detect less than optimal market participation or the exercise of market

power.6

Although my motivation derives from the SO2 market, the model developed in this

paper and its implications apply more broadly to any tradeable permits market that

faces a declining target and allows for banking, a possibility that is attracting attention

as a way to gradually introduce new regulation or tighten existing regulation.7 The

rest of the paper is organized as follows. Section 2 presents the model and examines the

performance of a permits market in which, for either regulatory or economic reasons, …rms

4Although not mentioned by the authors, higher compliance costs can also be due, at least in principle,
to market power.

5Important di¤erences exist, though. First, the permits market remains after the permits bank has
been exhausted, while the market for a typical exhaustible resource vanishes after the total stock has
been consumed. Second, storage costs for permits are zero, while they are generally positive for a typical
exhaustible resource. In addition, the demand for permits corresponds to a derived demand from the
same …rms that hold the permits, while the demand for a typical exhaustible resource comes from a
third party.

6Note that I explicitly say “optimal market participation” instead of “broad participation,” because,
in principle, the permits allocation may be such that little trading is required to reach the least-cost
solution.

7President Bush’s Clear Skies Initiative would reduce the existing SO2 emissions cap by another
70% in two steps starting in 2010 and current legislative proposals before the U.S. Congress would e¤ect
similar reductions. Moreover, an e¤ective policy for reducing atmospheric greenhouse gas concentrations
would likely include emission caps that would become more stringent over time. A banking provision
was also included as part of the permits program that gradually phased down the use of lead in gasoline
during the 1980s.
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do not bank permits but only trade permits spatially. Section 3 introduces a declining

target and banking, and explores the e¤ect of non-participation in the market on the

evolution of aggregate data such as the permits bank. Section 4 analyzes the evolution

of prices and the permits bank for a dominant …rm with a competitive fringe. Section 5

applies the model to SO2 market data. Final remarks are o¤ered in Section 6.

2 The model

For concreteness and consistency with the application in Section 5, the model that de-

veloped here focuses on an emission permits market, but it can easily be extended to any

other permits market by simply relabeling the variables.

2.1 Variables

Consider an industry with a large number N of heterogeneous …rms whose emissions

are regulated by a tradeable permits program (in the study of market power, I will

assume that a large fraction of these …rms merge to become a von-Stackelberg-dominant

producer). The regulator allocates a total of A(t) =
PN

i=1 ai(t) allowances (or permits) in

period t, where ai(t) is …rm i’s allocation at t (note that capital letter will denote industry

or group-level variables and small letter will denote …rm-level variables). Individual and

aggregate allocations, which can vary over time, are common knowledge.

Firms di¤er in their costs of abatement and unrestricted emissions (i.e., emissions that

would have been observed in the absence of the permits program). For mathematical

tractability, I assume that …rm i’s abatement costs are given by

ci(qi(t)) = ®i[qi(t)]
¯+1 (1)

where qi(t) are emissions reduced at t, ®i > 0 is …rm i’s private information, and ¯ ¸ 1
(to ensure an interior solution) is common to all …rms and known to the regulator.8

8Note that letting ¯ vary across …rms adds generality to the model but makes it mathematically
untractable. I discuss the implications of relaxing this assumption in a few places later in the paper
and argue that results are not a¤ected by this assumption. Also, we can let ®i decrease over time
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For a given aggregate level of reduction Q(t), the industry least-cost reduction burden

solves c0i(qi(t)) = c
0
j(qj(t)) for all i 6= j. Letting Q(t) =

P
qi(t), the industry least-cost

curve becomes

C(Q(t)) = °[Q(t)]¯+1 (2)

where

° =

Ã
NX
i=1

µ
1

®i

¶1=¯!¡¯

As commonly assumed in the literature (e.g., Weitzman, 1974), this cost formulation

supposes that the regulator has some notion about the shape of the aggregate cost func-

tion, but not enough to predict the market equilibrium price for a given level of aggregate

reduction.

Firm i’s unrestricted or counterfactual emissions are denoted by ui(t). Thus, …rm

i’s emissions at time t are ei(t) = ui(t) ¡ qi(t), and industry-level emissions are E(t) =PN
i=1 ei(t). As with costs, I assume that the regulator (or analyst) has much better

information at the aggregate than at the individual level (or that estimations at the

aggregate level are more precise than at the individual level), so I assume that he knows

U(t) =
Pn

i=1 ui(t) but not ui(t).
9

The above heterogeneity in costs and unrestricted emissions assures that many …rms

must buy and sell permits in the market in order to minimize total compliance costs. Firm

i’s trading volume in period t is xi(t), which can be either positive or negative depending

on whether the …rm is a net buyer (xi > 0) or net seller (xi < 0) of permits. Because

the regulator directly observes …rm i’s emissions ei (information that is also available

to the analyst) and enforces full compliance, xi is known and equal to ei ¡ ai. Note
that I simply de…ne trading volume as the di¤erence between emissions and allowance

allocation, regardless of the number of market exchanges in which the …rm was actually

at some known industry-wide rate ± ¸ 0 as a result of an exogenous innovation trend, speci…cally
®i(t) = ®i(0)e¡±t, without any change in the resolution of the model.

9I discuss this assumption further in the numerical section.
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engaged. I am solely interested in the …rm’s …nal position in the market, whether as a

net buyer or net seller.

2.2 A market without banking

Before introducing banking, let us consider the simplest case, in which the regulator does

not allow …rms to bank permits for future use (alternatively, consider the allowance cap

A(t) to be constant over time so there are no incentives for banking). When there is no

banking, full compliance implies A(t) = E(t) for all t, so market e¢ciency, as de…ned

above, requires (Montgomery, 1972)

C 0(Q(t)) = P ¤(t) (3)

for all t, where Q(t) = U(t) ¡ A(t), C 0(Q(t)) is obtained from (2), and P ¤(t) denotes

the “optimal” price of permits. Because ° is not known with precision, however, we

cannot be certain whether the observed market price P ±(t) is the e¢cient price or not

(hereafter the superscript “±” will indicate the observed variable). Even if ° is known,
P ±(t) = P ¤(t) is not a su¢cient condition for market e¢ciency. Although we can rule out

the presence of market power, we can still have P ± = P ¤ with less than optimal market

participation.

Market e¢ciency also requires a certain volume of trading. If xi(t) is the number

of permits that …rm i trades during period t, full compliance requires xi(t) + ai(t) =

ui(t)¡ qi(t). Thus, in an e¢cient market, …rm i’s trading volume is

xi(t) = ui(t)¡ ai(t)¡
µ
P ¤(t)
®i

¶1=¯
Replacing P ¤(t) according to (2) and (3), the (optimal) individual and aggregate volumes

of trading become, respectively,

x¤i (t) = ui(t)¡ ai(t)¡
µ
°

®i

¶1=¯
Q(t) (4)
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V ¤(t) =
NX
i=1

¯̄̄̄
¯ui(t)¡ ai(t)¡

µ
°

®i

¶1=¯
Q(t)

¯̄̄̄
¯ (5)

where Q(t) = U(t)¡ A(t).
Unlike price information, the actual or observed trading volume V ±(t) does convey

enough information for the analyst to conclude whether or not the market is e¢cient. In

fact, V ±(t) < V ¤(t) whenever there is non-participation (Stavins, 1995; Montero, 1998) or

market power (Hahn, 1984). However, when ui, °=®i or both of these values are unknown,

neither x¤i nor V
¤ can be estimated with precision;10 hence, the observed trading volume

(whether at the aggregate level or the individual level) does not tell us per se whether or

not the market is e¢cient. While a market with a signi…cant trading volume and broad

participation is more likely to approach e¢ciency, a market with a relatively low trading

activity, where x¤i ¼ 0 for several …rms, cannot be ruled as ine¢cient.
Thus, in the absence of detailed individual-level data on costs and unrestricted emis-

sions, it is not possible to conclude from trading activity data whether or not the market

is delivering the least-cost solution. Because it is always di¢cult to collect and develop

accurate …rm-level information,11 looking at each …rm’s …nal position in the market (i.e.,

x±i ) and comparing this to estimates of x
¤
i and V

¤ becomes almost a futile exercise. The

next two sections tackle the same e¢ciency question using a di¤erent approach that relies

on aggregate information and the intertemporal properties of an e¢cient equilibrium.

3 A market with banking

Let us consider the same N …rms, but in a market in which the regulator allows …rms to

bank permits for future use. For the latter to actually happen, permits allocations must

decrease over time (at least at a rate higher than the discount rate for some period of

10Note that because ai(t) varies across …rms, V ¤(t) cannot be estimated even if the correlation between
ui and ®i is known.
11As discussed by Ellerman et al. (2000, Appendix) for the case of unrestricted emissions, econometric

methods can provide reasonably accurate estimations for aggregate variables but generally imprecise
estimates for individual variables (i.e., ®i and ui). Accounting for individual statistical errors in the
estimation of V ¤ would lead to such a wide con…dence interval that contrasting V ± to V ¤ would be of
little use.
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time). To simplify notation and follow the SO2 program design, I let aH be the (high)

per-period permits allocation of each …rm during the …rst T periods of the program and

aL be the (low) per-period allocation thereafter, with aH À aL. Thus, the aggregate

allocations during these two phases are AH = aHN and AL = aLN , respectively.12 To

simplify notation further without loss of generality, I assume that ui(t) remains constant

over time, so I drop its time index.

3.1 The e¢cient solution

As in the static case, an e¢cient market with banking solves the following in…nite horizon

intertemporal minimization problem (Rubin, 1996; Schennach, 2000)

min

Z 1

0

Ã
NX
i=1

ci(qi(t))

!
e¡rtdt (6)

s.t. _B(t) = A(t) +Q(t)¡ U (7)

B(0) = 0;¡B(t) · 0 (8)

where r is the risk-free discount rate, B(t) is the stock (i.e., bank) of allowances at time t

and the dot denotes a time derivative. Denoting by ¸(t) and Á(t) the multiplier functions,

the Hamiltonian for this problem can be written as

H = C(Q(t))e¡rt + ¸(A(t) +Q(t)¡ U)¡ ÁB(t)

where C(Q(t)) is given by (2).

Necessary conditions for optimality include satisfaction of (7), (8), and13

@H

@Q
= C 0(Q(t))e¡rt + ¸(t) = 0 (9)

_̧ (t) = ¡@H
@B

= Á(t) (10)

Á(t) ¸ 0, Á(t)B(t) = 0 (11)

12Alternatively, one can let (AH ¡ AL)T be the initial stock B(0) and AL be the annual allocation
for every period.
13See Kamien and Schwartz (1991).
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In addition, taking the derivative of (9) with respect to time yields

_C 0(Q(t))¡ rC(Q(t)) + Áert = 0 (12)

When B(t) > 0, Á(t) = 0 and marginal costs, and hence prices, follow Hotelling’s rule,

rising at the discount rate r (note that permits are “extracted” at zero cost).

Whether and when …rms will bank permits depends upon the allocation of permits,

the evolution of marginal cost functions, and the discount rate. For example, a signi…cant

reduction of the permits allocation in the future, as in the SO2 program, will result in a

banking period of some length ¿ (to be determined shortly): …rms bank permits during

some period of time and gradually use them thereafter, until the bank expires at ¿ . After

¿ , …rms go back to the “market without banking” situation described above.

The full compliance condition establishes that the total number of permits allocated

during the banking period [0; ¿ ] be equal to the emissions accumulated during such period,

that is14

(AH ¡AL)T +AL¿ =
Z ¿

0

[U ¡Q(t)]dt (13)

At ¿ , the terminal condition E(¿ ) = A(¿) must also hold

Q(¿ ) = U ¡AL (14)

From (12) we have that C 0(Q(t)) = C 0(Q(¿ ))e¡r(¿¡t) when Á = 0. Then, using (2)

and (14), we have that

Q(t) = (U ¡ AL)e¡r(¿¡t)=¯ (15)

Substituting (15) into (13) and rearranging, we obtain the following expression that solves

14Note that this condition is the exhaustion condition of the exhaustible resource literature.
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for ¿

(AH ¡ AL)T
U ¡AL =

(aH ¡ aL)T
u¡ aL = ¿ ¡ ¯

r

¡
1¡ e¡r¿=¯¢ (16)

where u = U=n. Thus, for known values of AH , AL, U , ¯, and r, (16) provides a unique

solution ¿¤, which in turn allows us to compute the e¢cient paths for prices and quantities

during the banking period [0; ¿ ¤]. P ¤(t) will increase at the interest rate starting from

P ¤(0) = °(¯ +1)(U ¡AL)¯e¡r¿¤, while Q¤(t) will increase at the rate r=¯, starting from
Q¤(0) = (U ¡ AL)e¡r¿¤=¯. From the latter we can also compute the optimal emission

path, E¤(t) = U ¡Q¤(t), and the optimal banking path, B¤(t) = R t
0
[A(t)+Q¤(t)¡U ]dt.

Because the evolutions of these two quantity variables are directly connected to Q(t) in

what follows, I focus on Q(t).

3.2 The e¤ect of limited market participation

Having derived the aggregate behavior of an e¢cient market based on either data that

are readily available (e.g., AH , AL) or parameters that can be estimated with reasonable

precision (e.g., U , ¯, and r),15 one question remaining is whether we can detect less

than optimal market participation by contrasting the observed paths of prices P ±(t) and

quantities Q±(t) with the optimal paths P ¤(t) and Q¤(t). As in the non-banking case,

P ± provides little information to answer such a question, not only because of uncertainty

about ° but also because arbitrageurs ensure that _P ±=P ± = r in any active market. Con-

versely, the evolution of Q± (or B±) can provide valuable information to detect suboptimal

market participation.

To study the e¤ect of non-participation on Q(t), let us de…ne …rm j as a non-

participant if it uses its own permits for compliance and discounts the future at some rate

rj, which can be greater than, equal to, or lower than r.16 In the extreme case, a …rm

using rj =1 (or su¢ciently large) will bank no permits, and qj(t) = uj ¡ ai(t) for all t.

15See Ellerman and Montero (2002) for a discussion on how to collect this data for the SO2 market.
16Note that this formulation is general enough to accommodate for ine¢cient participation rather than

non-participation. Simply break down the …rm into an arbitrarily large number of production units and
let some fraction of these units not participate in the market.
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This is a non-participating …rm that even fails to minimize costs intertemporally, given

its own endowment of permits. In comparing Q¤ with Q± for a market with less than full

participation, it is useful to split the analysis into two cases: (a) all non-participating

…rms discount the future at some rate other than r, and (b) all non-participating …rms

use r.

Consider …rst for case (a), without loss of generality, two non-participating …rms 1

and 2 with discount rates r1 and r2. Since the optimization problem solved by either

of these production …rms is similar to the optimization problem for the industry, the

reduction path followed by a non-participating …rm j = 1; 2 is (superscript “n” stands

for non-participation)

_qnj (t)

qnj (t)
=
rj
¯

(17)

where qnj (0) = (uj ¡ aL)e¡rj¿j=¯ and ¿ j denotes the end of …rm j’s (private) bank that

solves (see (16))

(aH ¡ aL)T
uj ¡ aL = ¿ j ¡ ¯

rj

¡
1¡ e¡rj¿j=¯¢ (18)

Note that ¿ j(uj) is a decreasing function of uj,17 so there may be high levels of uj for

which ¿ j < T and for which the …rm does not bank any permits.

Since

_Q±(t) =
r

¯
Qp(t) +

r1
¯
qn1 (t) +

r2
¯
qn2 (t) (19)

where Qp is the total reduction from participating …rms (superscript “p” stands for

participation in the market), when both r1 and r2 are either greater or smaller than r, it is

immediate thatQ±(t) will always di¤er fromQ¤(t). When r1 < r < r2, _Q±(t)=Q±(t) = r=¯

17Taking the total derivative of (18) with respect to u and rearranging yields (index j is omitted)

d¿

du
=

¡(aH ¡ aL)T
(u¡ aL)2(1¡ e¡r¿=¯) < 0
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only if

(r ¡ r1)qn1 (t) = (r2 ¡ r)qn2 (t) (20)

holds for all t. Let suppose that (20) holds for t, then from (17), we have that in t +¢

(where ¢ is very small) qn1 (t+¢)=q
n
1 (t) = 1 + rj¢=¯ and

(r ¡ r1)qn1 (t+¢) ´ (r ¡ r1)
µ
1 +

r1¢

¯

¶
qn1 (t) <

(r2 ¡ r)
µ
1 +

r2¢

¯

¶
qn2 (t) ´ (r2 ¡ r)qn2 (t+¢) (21)

Consequently, when r1 < r < r2, Q± will also di¤er from Q¤.18 In sum, when all

non-participating …rms discount the future at some rate di¤erent than r, the evolution

of Q± will di¤er from Q¤ since the beginning of the banking program.

Consider now case (b). If rj = r for all j (where j still refers to a non-participating

…rm), then _Q±=Q± = r=¯ for all t. Because we cannot a priori rule out qnj (0) = q¤j (0)

for many combinations of uj and ®j,19 Q± and Q¤ may in fact follow close paths during

the early periods, at least, of the banking program. As the end of the e¢cient banking

program ¿ ¤ is approached, Q± could still follow Q¤ if and only if ¿ j = ¿¤ for all j. Because

of heterogeneity in …rms’ unrestricted emissions, however, the latter is unlikely to happen.

In fact, when ui 6= uk for all i = 1; :::; n and i 6= k and ¿ i is the end of …rm i’s (private)

bank according to (18), the latter leads to ¿ i 6= ¿ k and ¿ i = ¿ ¤ only for ui = u.
It is very unlikely, then, that the end of each non-participating …rm’s bank will ever

coincide with the end of the e¢cient banking program. If ¿ j > ¿ ¤ for at least one non-

participating …rm, then Q±(¿ ¤) < Q¤(¿¤). If, on the other hand, ¿ j < ¿ ¤ for all j (i.e.,

18One might argue that a (sub-optimal) observed path can still follow the optimal path if we let ¯s
vary across …rms such that the rate rj=¯j for each non-participating …rm equals the aggregate rate
“r=¯". Because this aggregate rate varies with time when ¯s di¤er across …rms, however, it will also
di¤er from rj=¯j .
19This combination derives from setting

q¤j (0)
qnj (0)

=
U ¡AL
uj ¡ aL

µ
°

®j

¶1=¯
= 1
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uj > u for all j), then the end of the banking period for the group of participating …rms

will be ¿p > ¿¤ because average unrestricted emissions from the participating …rms are

now lower than u. Consequently, we again have that Q±(¿ ¤) < Q¤(¿¤). The results of

cases (a) and (b) can be summarized in the following proposition

Proposition 1 The observed quantity path Q±(t) during a banking period will always

di¤er from the optimal path Q¤(t) if there exists at least one non-participating …rm j for

which either rj 6= r or uj 6= u.

Because it is most unlikely that one or more non-participating …rms will have the

same level of unrestricted emissions u,20 Proposition 1 indicates that even if, on average,

non-participating …rms do have unrestricted emissions equal to u, the e¤ects of their

non-participation on the evolution of Q(t) do not cancel out. Thus, the evolution of Q(t)

provides su¢cient information to judge the overall market performance. Furthermore, if

we allow ui to vary over time and ¯ to vary across …rms, the range of possible values

that ¿ j can take for each potential non-participating …rm will expand, making ¿ j and ¿ ¤

even more likely to di¤er.

A natural question that Proposition 1 raises for the case in which all non-participating

…rms discount the future at r is whether di¤erences between Q±(t) and Q¤(t) can be

detected early in the banking program or only towards its end. This question is not

irrelevant for a banking program that is expected to last many years, such as that for

the SO2 market.21 In this regard, Appendix A establishes

Proposition 2 If all non-participating …rms discount the future at r but there exists at

least one non-participating …rm j for which uj 6= u, then Q±(0) > Q¤(0).

Simply stated, Proposition 2 says that non-participation, if it exists at all, has an

immediate e¤ect on the evolution of Q(t) and B(t), and therefore we would not need to

collect data for the entire banking period before concluding about overall market perfor-

mance. Figure 1 presents the e¢cient quantity path Q¤(t) (path A) and a hypothetical

20As we will see later, in the case of the SO2 market, Ellerman et al. (2000) document signi…cant
heterogeneity in u.
21According to Ellerman et al. (2000) and Ellerman and Montero (2002) the SO2 bank is not expected

to end before 2008.
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observed path Q±(t) with non-participants discounting at r (path B). The end of the

bank along the e¢cient path is ¿ ¤, and the end of the bank for participating …rms is

denoted by ¿p, which can also be greater than or equal to ¿¤. Non-participating …rms’

individual banks end anywhere between ¿ l and ¿h (note that ¿h can be greater than,

equal to, or smaller than ¿¤).22 Full compliance or exhaustion also requires that between

0 and ¿h, the cumulative reduction along path A must equal the cumulative reduction

along path B. During the …rst years and before ¿ l, both Q¤ and Q± will grow at the same

rate r=¯. As some non-participants exhaust their individual banks, Q± will start growing

more slowly and will eventually cross Q¤ before ¿ ¤; otherwise the compliance condition

will not be satis…ed.

Before illustrating the e¤ect of non-participation on the equilibrium path with some

numerical exercises based on data taken from the SO2 permits market, I will examine

in the next section another type of market imperfection that can also prevent a permits

market from delivering the least-cost solution. We have already seen that the exercise of

market power cannot be detected in a “static” context unless detailed cost information

is obtained. I will next explore whether market power can be detected in a dynamic

context.

4 Banking with market power

Consider now a market with banking in which there is a dominant …rm and a competitive

fringe.23 The dominant …rm acts as a von Stackelberg leader, and all …rms in the fringe

have perfect foresight. Consequently, the dominant …rm’s decision problem is to choose

the price path along with its reduction (or emission) path that maximizes the net present

value of its pro…ts, knowing that each …rm in the competitive fringe will take such a price

path as given and that neither its bank nor the fringe’s bank can go negative.

Although this problem has been solved already for a typical exhaustible resource

22As explained in the Appendix A, if ¿h < ¿¤, then ¿p > ¿¤ and Figure 1 will still apply after relabeling
¿p for ¿h and vice versa.
23Based on the analysis of Lewis and Schmalensee (1980) for an oligopolistic market, considering two

or more large …rms and a competitive fringe should not qualitatively alter the main result of this section.
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under di¤erent set of assumptions (Salant, 1976; Gilbert, 1978; Newbery, 1981), the

proposed solutions do not immediately apply to a permits bank for several reasons.

First, extraction costs for permits are zero. Second, storage costs for permits are zero so

speculators (and …rms in the fringe) will make sure that prices neither jump nor grow

at a rate higher than r. This also enables the dominant …rm to buy permits from the

fringe and store them for future use at no cost other than the opportunity cost of selling

them earlier. Third, in a permits market, the dominant producer can still exercise market

power after its stock (i.e., bank) and that of the fringe have been exhausted. So, contrary

to what would occur in a typical exhaustible resource market, the dominant …rm may

still use its strategic position of the end of the banking period to exercise some market

power during the banking period even if it does not receive any permits from the stock

(AH ¡ AL)T , but only an allocation ‡ow throughout. Fourth, because the demand for
permits comes not from a third party (e.g., consumers) but internally from the fringe

and the dominant producer, the dominant …rm’s decision problem is the choice of not

only a permits sale/purchase path (or a price path supported by a sales path), but also

an abatement (or demand) path.

Rather than attempt a complete characterization of equilibrium paths for any possible

permits allocation and cost structure,24 I shall describe the equilibrium path for what

seems to be the most general case. Let f index the competitive fringe and m represent

the dominant producer. Abatement costs are as before, so the fringe and leader’s cost

curves are Cf(Qf(t)) = °f [Qf (t)]
¯+1 and Cm(Qm(t)) = °m[Qm(t)]

¯+1, respectively. Total

permits allocations are also as before, although it is useful to make an arti…cial distinction

here between stock and ‡ow allocations.25 The total ‡ow (or per period) allocation is

AL, beginning in t = 0, and the total stock allocation is (AH¡AL)T . The fringe receives
fractions µAL of the ‡ow allocation and ¹(AH ¡ AL)T of the stock allocation, so the

dominant …rm receives (1 ¡ µ)AL and (1 ¡ ¹)(AH ¡ AL)T , respectively. I also assume
that µ and °m=°f are small enough that the dominant producer is a seller of permits at

24In Liski and Montero (2002) we consider other allocation, cost and commitment structures. For
instance, we consider a dominant …rm (possibly a broker) that holds a large part of the permits stock
but does not pollute.
25The stock is the cumulative number of permits allocated above the long-term goal of AL.
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the end of the banking period.26

Let us …rst consider the case in which ¹ = 0. Under this permits allocation, the

fringe, on the one hand, does not build a bank on its own, but buys permits from the

dominant producer since the …rst period. The dominant …rm, on the other hand, …nds

it pro…table to build and manage a permits bank. Formally, the dominant …rm solves

max

Z 1

0

[P (t)X(t)¡ Cm(Qm(t))]e¡rtdt (22)

s.t. P (t) = C 0f(Qf (t)) (23)

X(t) = Uf(t)¡Qf(t)¡ Af(t) (24)

_Bm(t) = Am(t)¡ Um(t) +Qm(t)¡X(t) [¸m(t)] (25)

Bm(t) ¸ 0 [Ám(t)] (26)

Bm(0) = 0 (27)

where X(t) is the number of permits sold by the dominant …rm during period t,27 Bm(t)

is the dominant …rm’s bank, and ¸m and Ám are multiplier functions.

Since …rms in the fringe are price takers, it is irrelevant whether the leader solves for

P (t) orQf (t). Replacing (23) and (24) in the objective function to form the corresponding

Hamiltonian H(Qf ; Qm), the necessary conditions for optimality include satisfaction of

(23)–(27) and

@H

@Qf
= [C 00f (Qf(t))X(t)¡ C 0f(Qf (t))]e¡rt + ¸m(t) = 0 (28)

@H

@Qm
= ¡C 0m(Qf (t))e¡rt + ¸m(t) = 0 (29)

_̧
m(t) = ¡ @H

@Bm
= ¡ Ám(t), Ám ¸ 0, ÁmBm = 0 (30)

From (28) and (29) we obtain

[C 0f(Qf (t))¡ C 00f (Qf(t))X(t)¡ C 0m(Qm(t))]e¡rt = 0 (31)

26The same qualitative results apply if the dominant …rm is a monopsonist at the end of the banking
period (the end or “choke” price will be lower than the competitive price).
27If the dominant …rm acts as a monopsonist, then X(t) < 0.

16



Eq. (31) shows that if the strategy of the dominant …rm is optimal, the discounted

value of marginal revenues, C 0f ¡ C 00fX,28 minus marginal costs must be the same in all
periods during which the dominant …rm sells (i.e., marginal revenues net of marginal costs

must rise at the rate of interest). Furthermore, since the dominant …rm continues to enjoy

market power after both its stock and the fringe’s stock are consumed, marginal revenues

must be equal to marginal costs in all periods. At the end of the banking period ¿m, the

“choke” price Pm that prevails does not depend on the allocations before T , and can be

readily estimated by solving (31) subject to (24) and Qm(¿m) = U(¿m)¡AL ¡Qf(¿m).
Since the dominant …rm is assumed to be a seller of permits in the long run we have

Pm > P ¤(¿ ¤).

A characterization of the price path during the banking period can be obtained from

(28). Taking the derivative with respect to time, letting _̧m = 0, and rearranging yields

_P (t) = rP (t) + _C 00f (Qf(t))X(t)¡ rC 00f (Qf(t))X(t)¡ C 00f _Qf(t) (32)

Because there are no storage costs, we already know that arbitrage prevents prices from

increasing at any rate higher than the discount rate r; hence, _Qf=Qf cannot be higher

than r=¯. Using this and Cf(Qf (t)) = °f [Qf(t)]
¯+1, it is not di¢cult to show that

_C 00f
C 00f

= (¯ ¡ 1)
_Qf
Qf

· r

which, in turn, implies that _P=P < r.29 Consistent with Salant (1976) and Newbery

(1981), when the fringe has no stock left, it is optimal for the dominant producer to let

prices rise at a rate strictly lower than the discount rate.

The quantity path, Q(t) = Qf (t) + Qm(t), can be derived from the price path, eq.

(31) and the exhaustion or full compliance conditions. From the price path and (31),

we know that _Qf=Qf < r=¯ and _Qm=Qm = r=¯, respectively. This implies that in the

presence of market power, the observed quantity pathQ±(t) rises at a lower rate than does

28Note that since C00f (Qf (t)) = @P (Qf (t))=@Qf (t), marginal revenues can be expressed as P (t) ¡
P 0(X(t))X(t).
29Note that if marginal cost curves are linear, i.e., ¯ = 1, _Qf=Qf = _P=P and _P=P = r=2.
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the e¢cient quantity path Q¤(t). This result, together with the exhaustion conditions,

indicates that Q±(t) must start above Q¤(t) and cross it from above at some later point

to …nally converge to U(¿m)¡AL at ¿m > ¿ ¤. Although driven by di¤erent reasons, the
e¤ect of market power on Q(t) is qualitatively similar to the e¤ect of non-participation

on Q(t) that is depicted in Figure 1. Market power unambiguously prolongs the length

of the banking period and increases the total cost of compliance.30

For this particular allocation of permits in which the fringe builds no stock, it is

possible to detect the presence of market power by contrasting either Q±(t) with Q¤(t)

or _P ±=P ± with r (recall that absolute price levels do not say much because of limited

cost information). However, the latter becomes unfeasible when the fringe holds a bank.

During the period in which the fringe’s bank is positive, prices must rise at the interest

rate; otherwise the fringe would not hold any permits.

Let us now consider the more general case in which the fringe holds a permits bank

for some period of time. To make the case clear enough, let us assume that ¹ = 1,

so the dominant …rm receives no stock. One can think of di¤erent candidates for the

Stackelberg-rational expectations equilibrium. For example, the dominant …rm could

propose a price path growing at a lower rate that would induce …rms in the fringe to sell

all their stock as early as the …rst period. In the absence of binding contracts, however,

this solution is time inconsistent, because as soon as the fringe’s stock is exhausted, the

dominant …rm will …nd it pro…table to revise its initial price path proposal and raise

prices accordingly. Firms in the fringe will anticipate the price jump and hence hold onto

their permits rather than sell them in the …rst place.

Since the dominant …rm receives no stock, another candidate is one in which the

dominant …rm builds no bank and the fringe’s bank expires at the choke price Pm. If

this were indeed the solution, market power could not be detected from either price

or quantity data. Price would rise at the rate of interest during the entire banking

period, and from the exhaustion conditions it is clear that the aggregate quantity path

Q(t) = Qf (t) + Qm(t) would coincide with the competitive path Q¤(t). This solution

30This is in contrast with Stiglitz (1976) and Weinstein and Zeckhauser (1979) who show that for a
typical exhaustible resource the e¤ect of market power on the direction and magnitude of the departure
from optimality cannot be predicted in general.

18



cannot be an equilibrium either, because the dominant …rm sells permits before the end

of the banking period. Since the dominant …rm has enough ‡exibility to support this

price path through di¤erent sales paths (all yielding the same discounted sum of pro…ts

of the fringe and the leader), it can certainly choose to accelerate the exhaustion of the

fringe’s bank by holding onto its permits and selling them only after the fringe bank has

been exhausted at ¿ f < ¿¤. At ¿ f , however, the dominant …rm would …nd its original

proposal no longer optimal and would let prices rise (after a possible instantaneous jump)

at a rate strictly lower than r until they reach Pm at ¿m > ¿ ¤ > ¿ f .

Consequently, the equilibrium path must necessarily have the dominant …rm conserv-

ing enough permits to keep a stock that will consume and sell after all …rms in the fringe

have exhausted theirs, regardless of how much it received of the stock (AH ¡AL)T . Be-
fore providing the complete solution, the latter equilibrium condition gives us su¢cient

information to depict typical equilibrium price and quantity paths, P ±(t) and Q±(t), re-

spectively. As shown in Figures 2 and 3, there will be three distinctive phases. During

phase A, P ±(t) rises at the interest rate r, and Qf (t) and Qm(t) rise at r=¯, as in the

competitive case. While the fringe consumes its stock and the dominant …rms builds

its own, it is not obvious whether the dominant …rm participates in the market during

this phase (more on this below). At ¿ f , the fringe’s bank is exhausted but the dominant

…rm’s bank is positive. Phases B and C are as before. In phase B, P ±(t) rises at a rate

strictly lower than r, and Q±(t) = Qf(t) +Qm(t) grows at a rate strictly lower than r=¯

since Qf (t) follows the price path. Furthermore, from the full compliance (or exhaustion)

condition, the observed path Q±(t) crosses the competitive path Q¤(t) sometime during

this phase. At ¿m, the leader’s bank is exhausted, after which prices remain constant at

Pm > P ¤.

Because quantity data allow us to detect market power even when prices rise at rate r

during phase A, the results of this section can be summarized in the following proposition:

Proposition 3 In the presence of market power, Q±(t) 6= Q¤(t), regardless of the al-

location of the permits stock, i.e., (AH ¡ AL)T . More speci…cally, Q±(0) > Q¤(0) and

¿m > ¿ ¤.

Although Proposition 3 establishes that market power will immediately a¤ect the
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quantity path (which answers one central question of this paper), it does not say much

about the di¤erence in magnitude between Q±(t) and Q¤(t) for a given permits alloca-

tion (µ and ¹) and cost structure (°f and °m). For that we must derive the complete

equilibrium solution. In particular, we need to determine ¿ f and ¿m.

The solution must not only be time consistent and exhibit the market power of the

dominant …rm after the fringe’s bank has expired, but one can argue that it should also

make some use of the ability of the dominant …rm to alter the stock of the fringe during

the competitive phase (phase A) by either selling or buying permits. In the absence of

binding contracts, however, the latter possibility will be time inconsistent in the sense

that the dominant …rm would continuously like to revise its original price path after

each transaction.31 To overcome these objections and still allow the dominant …rm to

be more active during the competitive phase, Newbery (1981) argued that the Nash-

Cournot equilibrium appears to be the best approximation to the rational expectations

Stackelberg equilibrium.32 In our context, however, such an approximation looks less

attractive to the leader, since in a permits market where there is no third-party demand,

the Nash-Cournot equilibrium coincides with the Nash bargaining solution (Spulber,

1989) in which P = C 0f (Qf) = C
0
m(Qm). Hence, the more reasonable solution is for the

dominant …rm to refrain from any permits transaction during the competitive phase and

only start selling permits at ¿ f (the formal derivation of such an equilibrium solution can

be found in Appendix B).

5 An application

The U.S. SO2 trading program is a natural candidate for demonstrating the application

of the model. Hence, the purpose of this section is not to present a formal e¢ciency test

31Since the dominant …rm’s optimal sale or purchase is a function of the fringe’ stock, the ex-ante
(i.e., before the transaction) optimal solution di¤ers from the ex-post optimal solution. The rational
expectations Stackelberg equilibrium derived by Gilbert (1978) in his example does not have this time
inconsistency problem because he uses a constant demand elasticity (besides equal discount rates and
zero extraction costs), which is not our case. See Liski and Montero (2002) for more on this time
inconsistency issue.
32The Nash-Cournot equilibrium is also used by Salant (1976).
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for the actual evolution of the SO2 bank,33 but to illustrate the e¤ect of di¤erent forms of

non-participation (or ine¢cient participation) on the evolution of prices and quantities

and see whether it is possible to detect non-participation with some degree of con…dence.

Furthermore, because market power does not seem to be an issue in the SO2 program, I

focus exclusively on the e¤ects of non-participation.

For the application, I use data from the 263 electric utility power plants a¤ected

in both Phase I, which lasted for T = 5 years, and Phase II of the program, which is

ongoing. The total number of permits (or allowances) allocated to all of these plants each

year during Phase I was AH = 6:31 million and during Phase 2 was AL = 2:37 million.

Each permit gives its holder the right to emit one ton of SO2 in a particular year. To

allow for the possibility that a plant owner may partially participate in the market (i.e.,

engage in some trading activity, but not enough to equate marginal costs and prices), I

divide each of the 263 plants into smaller production units of roughly 100 MW each,34

resulting in a total of n = 881 units. I then treat each of these production units as an

independent …rm that either fully participates in the market or does not participate at

all, as in the model.

Statistics for the 881 units are summarized in Table 1. Permits allocations for each

unit (aiH and a
i
L) are obtained by dividing the allocation of the original plant to which the

unit belongs by the number of production units in that plant. Individual unrestricted

or counterfactual emissions (ui) are obtained in a similar way, and are approximately

equal to emissions at the time the SO2 program was signed into law in 1990 multiplied

by a 10-year growth factor of 6.5%, based on EPA’s emissions forecast at that time.35

Counterfactual emissions total U = 9:14 million tons. Cost parameters for each unit (®i)

are randomly assigned from a uniform distribution over the interval [0:002; 0:0002]. To

be consistent with previous estimates, these numbers were chosen to produce an initial

equilibrium price of about $260 and long-run (i.e., after the banking period) cost savings

33A formal test would require an empirical estimate of several parameters including the discount rate.
For more see Ellerman and Montero (2002).
34For example, a plant 430-MW plant is converted into 4 smaller units while a 670-MW plant is

converted into 7 smaller units. Plant size ranges from 100 MW to 1500 MW.
35For 21 units, I increased counterfactual emissions a bit further just to avoid corner solutions. On

aggregate, this represents a less than 1% increase of counterfactual emissions.
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from trading on the order of 45%. In addition, I use convex marginal cost curves with

¯ = 1:5 (in order to avoid corner solutions) and a discount rate of r = 6%. To keep

things simple, I assume that a …rm j that does not participate is one of three possible

types, depending on its discount rate: (1) rj = r, (2) rj = r=2 and (3) rj À r (i.e., no

banking).

Simulation results for relevant variables and di¤erent levels of market participation are

in Table 2. Since each market simulation randomly assigns to each unit a cost parameter

®i, a participation status, and a non-participation type, the results presented are averages

over several simulation runs. As a benchmark, the …rst row shows the command-and-

control (CAC) solution in which …rms are prevented from engaging in both spatial and

intertemporal trading, hence; Q(0) and Q(¿) are the total reductions in each year during

Phase I and Phase II, respectively, and C(0) and C(¿) are the corresponding costs. The

second row presents the market e¢cient solution, with a banking period (¿) of about 13

years and a bank at the end of Phase I, B¤(T ), of 8.04 million permits.

Without any prior regarding the proportion of types among non-participants, the third

row shows the e¤ects of a 25% non-participation rate, assuming that non-participation

types are in equal proportions. While by the end of Phase I the actual bank B±(T ) is

only 5% smaller than B¤(T ), by the tenth year the actual bank B±(10) is 18% larger than

the e¢cient bank B¤(10); this result is comparable to the 18% long-run e¢ciency losses

(i.e., higher costs C(¿)) from less than optimal market participation. As shown in rows

4 and 5, these di¤erences between the actual bank path and the e¢cient path increase

steadily as the participation rate falls.

The next seven rows (from 6 to 12) present results for a 75% participation rate and

di¤erent combinations of non-participation types. Di¤erences in both the levels and the

rates of change between the actual and the e¢cient bank path are always important,

particularly as the bank is withdrawn. For instance, row 9 considers a proportion of non-

participation types (3/4 of type 2 and 1/4 of type 3) such that B±(T ) is almost equal to

B¤(T ), but because the rate at which the e¢cient bank is withdrawn is higher than the

rate at which the actual bank is withdrawn, B±(10) is considerably larger than B¤(10).

Interestingly, when all non-participants discount the future at the market rate r (i.e.,
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type 1), as in row 10, the di¤erences between the e¢cient and the actual path reduce

signi…cantly, but not so fully as to prevent the detection of some market ine¢ciencies

(B±(10) is still 13% larger than B¤(10)).

Because actual and e¢cient paths di¤er at various point in time, precise knowledge

of total unrestricted (or counterfactual) emissions, as we have assumed so far, is not

crucial for the detection of non-participation, if it exists. Row 13 shows the e¢cient

solution for a market in which total unrestricted emissions are assumed to be 10% higher

than before (i.e., 10:05 million tons).36 Thus, if we perform an e¢ciency test assuming

incorrectly that total unrestricted emissions are 10:05 instead of 9:14, the e¤ect on B(t)

of a 60% participation rate (with equal proportion of non-participation types) may not

be detected easily at T , as shown in row 14. However, since an actual bank with partial

participation and the e¢cient bank evolve at di¤erent rates, their paths will inevitably

di¤er both before and after T .37 This applies to di¤erent participation rates and to

di¤erent proportions of non-participation types, as well.

6 Final Remarks

I have investigated the e¤ects of less than optimal market participation and of the exer-

cise of market power on the equilibrium path of a permits market with banking. During

the period in which …rms bank and withdraw permits from the bank (i.e., the bank-

ing period), the e¢cient price path follows Hotelling’s rule, rising at the interest rate;

because of imperfect cost information, however, the actual price path does not provide

enough information to detect either non-participation or market power (at least during

the competitive phase). The e¢cient permits bank path, on the other hand, is unique

and can be readily contrasted with the evolution of the actual bank. In the case of non-

participation, this is possible because of heterogeneity across …rms (particularly in term

of their counterfactual emissions). In the case of market power, this is possible because

the dominant …rm always conserves a stock of permits after all …rms in the fringe have

36To facilitate the numerical solution of the model without a¤ecting the aggregate quantity results, I
also assume that all individual unrestricted emissions increase by 10%.
37Note that B(0) = AH ¡ U +Q(0).
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exhausted theirs. After that, the price path rises at a rate strictly lower than the interest

rate until it reaches the static monopoly level.

In an e¤ort to contribute to the aforementioned debate about the performance of the

permits market of the U.S. Acid Rain Program, I then applied the theoretical model to

data obtained from the SO2 permits program. Numerical exercises indicate that the levels

of ine¢ciency (i.e., higher compliance costs) suggested by Carlson et al. (2000) can be

supported only by a signi…cant degree of non-participation: about 50%, if we believe that

non-participants use discount rates that are not necessarily equal to the market discount

rate, as shown in row 4 of Table 2. Furthermore, for this degree of non-participation, the

evolution of the actual bank would di¤er noticeably from the evolution of the optimal

bank; it would be 11% smaller by t = 5 (end of Phase 1) and 36% larger by t = 10 (see

row 4). This departure from optimal banking is in sharp contrast with the empirical

analysis of Ellerman and Montero (2002), who found that the aggregate evolution of the

SO2 bank for the period 1995-2001 closely follows the evolution of an optimal bank.
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A Proof of Proposition 3

I provide a general proof by considering two special cases: (1) two non-participating …rms

1 and 2, for which u1 < u < u2; and (2) one non-participating …rm j, for which uj 6= u.
Case (1): There are only two non-participating …rms 1 and 2 for which u1 < u < u2.

From (16) and (18) we have that ¿1 > ¿¤ > ¿2. In addition, if we assume, for notational

simplicity, that u1 < (U ¡u1¡u2)=(n¡2) < u2,38 we also have that ¿1 > ¿p > ¿ 2, where
¿p is the end of the bank for the group of participating …rms.

Full compliance requires

Z ¿1

0

Q¤(t)dt =
Z ¿1

0

Q±(t)dt (33)

Replacing Q±(t) by qn1 (t) + q
n
2 (t)+Q

p(t), where Qp is the total reduction from the group

of participating …rms, (33) becomes (note that, to save on notation, I have made the

time index a subscript for t = 0)

Z ¿¤

0

Q¤0e
rt=¯dt+ (U ¡AL)(¿ 1 ¡ ¿¤) =

Z ¿1

0

qn10e
rt=¯dt+

Z ¿2

0

qn20e
rt=¯dt+

(u2 ¡ aL)(¿ 1 ¡ ¿2) +
Z ¿p

0

Qp0e
rt=¯dt+ (U ¡ u1 ¡ u2 ¡AL + 2aL)(¿1 ¡ ¿ p) (34)

38This assumption is equivalent to saying that (u1 + u2)=2 is not too di¤erent from u.
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Developing (34), using each bank’s terminal condition (see (14)), and rearranging

terms leads to

f(u1; u2) ´ ¯

r
[qn10(u1) + q

n
20(u2) +Q

p
0(u1; u2)¡Q¤0] =

(U ¡ u1 ¡ u2 ¡ AL + 2aL)(¿ 1 ¡ ¿ p) + (u2 ¡ aL)(¿ 1 ¡ ¿2)¡ (U ¡ AL)(¿ 1 ¡ ¿¤) (35)

Thus, the proof for case (1) would be complete if we can demonstrate that f(u1; u2) > 0.

Although the …rst two terms on the right-hand side (RHS) of (35) are positive, the third

term is negative, so the sign of f(u1; u2) remains ambiguous.

I proceed the demonstration with a comparative static analysis by letting u1 = u¡¢
and u2 = u+¢, with ¢ su¢ciently small to use a second-order Taylor’s approximation

for f(u1; u2) around f(u; u), as follows

f(u1; u2) ¼ f(u; u) + f 01(u; u)(¡¢) + f 02(u; u)¢

+
1

2
[f 0011(u; u)¢

2 + 2f 0012(u; u)(¡¢2) + f 0022(u; u)¢2] (36)

where subscripts 1 and 2 in f denote (partial) derivatives with respect to u1 and u2,

respectively. SinceQp0 is una¤ected by¢ because (u1+u2)=2 = u, then f
0
1(u; u) = f

0
2(u; u).

Thus, substituting f(u; u) = 0 and f 0012(u; u) = 0 into (36) we obtain

f(u1; u2) =
¢2

2
[f 0011(u; u) + f

00
22(u; u)] =

d2 (qnk0(uk = u))

du2k
¢2 (37)

where k is either 1 or 2.

Thus, we must now demonstrate that qnk0 is convex in uk. Since q
n
k0 = (uk¡aL)e¡r¿k=¯,

plugging the latter into (18) we obtain (hereafter I drop the indices k and n)

(aH ¡ aL)T = (u¡ aL)
µ
¿ ¡ ¯

r

¶
+
¯

r
q0

which, after total di¤erentiating by u, yields

0 = ¿ ¡ ¯
r
+ (u¡ aL)d¿

du
+
¯

r

dq0
du

(38)
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Obtaining d¿=du by taking the total derivative of (18) with respect to u, substituting it

into (38), and rearranging terms leads to

dq0
du

=
r¿=¯

er¿=¯ ¡ 1 > 0

and

d2q0
du2

=
r

¯

³
er¿=¯ ¡ 1¡ r

¯
¿er¿=¯

´
(er¿=¯ ¡ 1)2

d¿

du

Since d¿=du < 0, it remains to be demonstrated that the expression in parentheses

in the numerator is negative. Multiplying (18) by er¿=¯ and rearranging, we obtain

er¿=¯ ¡ 1¡ r

¯
¿er¿=¯ = ¡r(aH ¡ aL)

¯(u¡ aL) e
r¿=¯ < 0

which …nishes the proof for Case (1).

Case (2): There is only one non-participating …rm j for which uj = u +¢ (we shall

see that the same result is obtained for uj = u¡¢). Since ¿ j < ¿ ¤ < ¿ p, full compliance
requires

Z ¿p

0

Q¤(t)dt =
Z ¿p

0

Q±(t)dt (39)

Replacing Q±(t) by qnj (t) +Q
p(t) in (39) and proceeding as before we obtain

f(uj) ´ ¯

r
[qnj0(uj) +Q

p
0(uj)¡Q¤0] = (uj ¡ aL)(¿p ¡ ¿ j)¡ (U ¡ AL)(¿p ¡ ¿¤) (40)

Since the sign of f(uj) remains ambiguous from (40), I again let ¢ be su¢ciently

small in order to use a second-order Taylor’s approximation for f(uj) around f(u), as

follows

f(uj) = f(u) + f
0(u)¢ +

1

2
f 00(u)¢2 (41)
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To compute f 0 and f 00, it is useful to write qnj0 and Q
p
0 as functions of uj (or ¢), as follows

qnj0(uj) ´ qnj0(x) = (u+ x¡ aL)e¡r¿(x)=¯ (42)

Qp0(uj) ´ Qp0(y) = (n¡ 1)(u+ y ¡ aL)e¡r¿(y)=¯ (43)

where x = ¢, y = ¡¢=(n¡ 1), and ¿ (z = x; y) is obtained from

(aH ¡ aL)T
u+ z ¡ aL = ¿ (z)¡ ¯

r

¡
1¡ e¡r¿(z)=¯¢

Since dqnj0(uj)=duj = dq
n
j0(x)=dx by construction (uj = u+ x), we have that

dQp0(uj)

duj
=
dQp0(y)

dy

dy

duj
(44)

Replacing dy=duj = ¡1=(N ¡ 1) and using the similarity between (42) and (43), we get

dQp0(uj)

duj
= (N ¡ 1)dq

n
j0(x)

dx

¡1
N ¡ 1 = ¡

dqnj0(uj)

duj
(45)

In addition, taking the derivative of (44) with respect to uj yields

d2Qp0(uj)

du2j
=
d2Qp0(y)

dy2

µ
dy

duj

¶2
+
dQp0(y)

dy

d2y

du2j

= (N ¡ 1)d
2qnj0(x)

dx2

µ
1

N ¡ 1
¶2
=

1

N ¡ 1
d2qnj0(uj)

du2j
(46)

Plugging dqnj0(uj)=duj, d
2qnj0(uj)=du

2
j , (45), and (46) into (41) yields

f(uj) =
1

2
f 00(u)¢2 =

N¢2

2(N ¡ 1)
d2qnj0(uj = u)

du2j
(47)

Since qnj0 is convex in uj, as demonstrated in Case (1), f(uj) > 0 when there is only

one non-participating …rm j for which uj = u + ¢. Following the same procedure, it is

immediate that (47) also results when uj = u¡¢.
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B The dominant …rm’s solution

The solution of the dominant …rm is found by …rst imposing a continuous price path

that ends at Pm, the monopoly price that prevails when there is no bank left and which

can be easily obtained from (31). From 0 to ¿ f (the time at which the fringe’s bank

is exhausted), _P (t)=P (t) = r, and from ¿ f to ¿m (the time at which the dominant

…rm’s bank is exhausted), _P (t)=P (t) < r, according to (32). At ¿m and afterward,

P (t) = Pm > P ¤(¿m).

The rest of the solution (i.e., ¿m and ¿ f ) is found by simultaneously solving the two

“exhaustion” conditions: the fringe’s bank expires at ¿ f and the dominant …rm’s bank

expires at ¿m > ¿ f . Since the dominant …rm does not trade between 0 and ¿ f , these two

conditions can be written as

Z ¿f

0

Qf (t)dt = (Uf ¡ µAL)¿ f ¡ ¹(AH ¡ AL)T (48)

Z ¿m

0

(Qf (t) +Qm(t))dt = (U ¡AL)¿m ¡ (AH ¡AL)T (49)

where Uf = U ¡ Um and µ and ¹ are, respectively, the proportion of ‡ow and stock

permits allocated to the fringe.

The fringe’s abatement path Qf(t) follows the price path according to C 0f(Qf (t)) =

P (t). The dominant …rm’s abatement path Qm(t), on the other hand, must minimize the

present value of the dominant …rm’s compliance costs during the banking period; hence,

it must grow at r=¯ until it reaches its long-term level Qmm at ¿
m (this value can also be

obtained from (31)). Substituting these abatement paths and the price path into (48)

and (49), ¿ f and ¿m are …nally found.

30



TABLE 1. Summary statistics (in thousands)

Variable # units Mean St. dev. Min Max Total

aH 881 7.17 2.05 0.42 12.49 6,314

aL 881 2.69 0.64 0.14 4.60 2,372

u 881 10.37 3.85 0.40 22.63 9,135

TABLE 2. The e¤ect of non-participation (Q, B, and C, in millions)

Particip. Prop. Types

Rate (1);(2);(3)¤ ¿ Q(0) Q(¿ ) B(T) B(10) B(¿ ) P(0) C(0) C(¿ )

1 CAC n.a. n.a. 2.88 6.76 n.a. n.a. n.a. n.a. 580 2817

2 100% n.a. 13.13 4.00 6.76 8.04 1.27 0 259 414 1539

3 75% 1/3;1/3;1/3 13.11 3.97 6.69 7.64 1.50 0.22 258 535 1813

4 50% 1/3;1/3;1/3 13.16 3.94 6.62 7.19 1.73 0.44 261 656 2087

5 <1% 1/3;1/3;1/3 13.23 3.89 6.49 6.42 2.18 0.88 247 901 2640

6 75% 1/2;1/2;0 13.12 4.10 6.65 8.44 1.78 0.34 259 577 1788

7 75% 1/2;0;1/2 13.11 3.86 6.73 7.05 1.19 0.06 259 496 1852

8 75% 0;1/2;1/2 13.12 3.96 6.69 7.41 1.53 0.27 260 531 1785

9 75% 0;3/4;1/4 13.14 4.07 6.65 8.08 1.82 0.40 259 583 1783

10 75% 1; 0; 0 13.11 4.01 6.70 8.11 1.43 0.12 260 527 1824

11 75% 0; 1; 0 13.14 4.18 6.61 8.73 2.09 0.53 259 617 1746

12 75% 0; 0; 1 13.14 3.72 6.76 6.00 0.95 0 256 615 1986

13 100% n.a. 12.25 4.70 7.68 7.35 0.76 0 328 617 2103

14 60% 1/3; 1/3; 1/3 13.16 3.96 6.64 7.41 1.65 0.35 256 615 1986
¤Non-participation types are: (1) r = 6%, (2) r = 3%, and (3) r À 6%. Counterfactual in

row 13 is 10% higher
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Figure 1: E¤ect of non-participation on the abatement path, Q±(t).
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Figure 2: E¤ect of market power on the price path, P ±(t).
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Figure 3: E¤ect of market power on the abatement path, Q±(t).
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