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Abstract

Following the structure of many commodity markets, we consider a reduced number of

large firms and a competitive fringe of many small suppliers choosing quantities in an infinite-

horizon setting subject to demand shocks. We show that a collusive agreement among the

large firms may not only bring an output contraction but also an output expansion (relative

to the non-collusive output level). The latter occurs during booms, when the fringe’s market

share is more important, and is due to the strategic substitutability of quantities (we will

never observe an output-expanding collusion in a price-setting game). In addition and

depending on the fringe’s market share the time at which collusion is most difficult to

sustain can be either at booms or recessions.

1 Introduction

In Table 1 we reproduce Orris C. Herfindahl’s Table 3 (1959, p. 115) with a summary of the

evolution of the so-called international copper cartel that consisted of the five largest firms and

operated during the four years preceding the Second World War. Herfindahl argues that the

cartel was successful in restricting output during the periods of low demand (denoted as Quota

status and associated to lower spot prices in the London Metal Exchange) but failed to extend
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such restrictions to the periods of high demand when the cartel and non-cartel firms returned

to their non-collusive output levels.1

Herfindahl’s description appears consistent with some existing collusion theories; in par-

ticular, with Rotemberg and Saloner’s (1986) prediction for the evolution of a cartel under

conditions of demand fluctuations in that collusive firms have more difficulties in sustaining

collusion during booms (i.e., periods of high demand).2 We advance a different behavioral

hypothesis in this paper. We posit that the large output expansions undertaken by cartel mem-

bers during the two booms (Jan.—Nov. 1937 and Oct.—Dec. 1938) may not necessarily reflect

a return to the non-collusive (i.e., Nash-Cournot) equilibrium but rather a continuation with

the collusive agreement in the form of a coordinated output expansion of cartel members above

their Nash-Cournot levels.3

The objective of this paper is to explore the conditions under which a collusive agreement,

if sustained, can take an output-expanding form at least during some part of the business cycle

and discuss its welfare implications. Although we do not run any empirical test, we will see

that the international copper cartel of 1935-39, as well as many of today’s commodity markets,

appear to be good candidates in which this is likely to happen for basically two reasons. First,

in these markets a firm’ strategic variable is its level of production while prices are cleared,

say, in a metal exchange. And second, collusive efforts, if any, are likely to be carried out

by a fraction of the industry (typically, the largest firms) leaving, for incentive compatibility

reasons, an important fraction of the industry (consisting mostly of a large number of small

firms) outside the collusive agreement but nevertheless enjoying any eventual price increase

brought forward by the collusive agreement (we will often refer to the group of non-cartel firms

as competitive fringe and to the group of potential cartel firms as strategic or large firms).4

It is important to make clear that the possibility of having an output-expanding collusion,

and hence, lower prices, is totally unrelated to this idea that a cartel should prevent prices

1Walters (1944) also comments on the satisfactory operation of the cartel in that there is no indication that
sanctions for non-compliance were ever invoked.

2Rotemberg and Saloner’s (1986) prediction can change if we introduce imperfect monitoring (Green and
Porter, 1984), a less than fully random demand evolution (Haltinwager and Harrington, 1991; Bagwell and
Staiger, 1997), and capacity contraints (Staiger and Wolak, 1992).

3That collusion could lead to higher ouput, and hence, increase welfare was first articulated by Dewey (1979)
but for reasons very different than ours. His logic, however, was highly controversial as noted by several authors
in a later issue of the American Economic Review (1982, Vol. 1).

4Although the collusion literature usually assumes a structure of identical firms, this heterogenous structure
in which a few large firms compete with many smaller firms has long been recognized (Arant, 1956; Pindyck,
1979).
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going too high as to induce the development of a substitute product (or the discovery of new

mineral deposits) that can eat up a fraction of the current demand. Besides that this can be

easily added to our model by including a probability of discovery increasing in prices (more

reasonably perhaps, in the average price of some period of time), our model is constructed

simply upon the presence of a known fringe of small suppliers that run and shut down their

production units so at all moment the unit-cost of the marginal fringe firm is equal to the

equilibrium price. In addition and consistent with practical observation, we assume that the

entry or exit of large firms is a rare event.

Our results are entirely explained by market-interaction forces among existing players. To

see this consider the evolution of the non-collusive (Nash-Cournot) equilibrium in a market

subject to frequent demand shocks. As expressed to us by some observers/participants of

the copper industry, the (non-collusive) market share of fringe firms typically expands during

booms and contracts during recessions. In other words, a large firm’s unilateral best response

is to limit its own expansion during booms. As a consequence and because of the strategic

sustitutability between the output of fringe firms and that of large firms (Bulow et al., 1985;

Fudenberg and Tirole, 1984), it may be optimal for the large firms to coordinate in a joint

output expansion beyond their Nash-Cournot levels. The price drop caused by the strategic

firms’ output expansion is more than offset by their market share increase.

Whether or not it is optimal for the large firms to implement such an output-expanding

collusion as opposed to a traditional output-contracting collusion will ultimately depend on the

fringe’s (non-collusive) market share, which in turn, will depend on cost differences between

large and fringe firms and on the magnitude of the demand shocks. One can always find

fringe costs sufficiently low (high) that it is optimal for strategic firms to implement an output-

expanding (-contracting) collusion for all possible realizations of demand. As we speculate

for the copper cartel of 1935-39, however, the more interesting case is that in which fringe

costs generate both output-expanding collusion during booms and output-contracting collusion

during recessions.

One way to appreciate these results more fully it is to contrast them with those obtained

from a price-setting game for differentiated products.5 Think, for example, of a conventional

Hotelling linear city in which there are two large supermarkets in each extreme of the city and

a large number of small stores located downtown (i.e., in the middle of the city) competing

5 If products are perfectly homogeneous it is immediate that we can never have an output-expanding collusion.
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in prices.6 Following the arguments above, one could conjecture that for a fringe sufficiently

efficient that enjoys a large market share it may be optimal for the two supermarkets to co-

ordinate on jointly pricing below their non-collusive (Nash-Bertrand) levels and expand their

market share accordingly. It turns out this is never the case and the reason is the strategic

complementarity between prices charged by the strategic firms and by the fringe firms. If large

firms lower their prices, fringe firms’ equilibrium response is to lower theirs.

The presence of an important fraction of non-cartel firms has also implications for cartel

firms’ ability to sustain the collusive outcome throughout the business cycle. Using the same

i.i.d. demand shocks of Rotemberg and Saloner (1986), we show that it is no longer true that

is more difficult for firms to sustain maximal collusion during booms than during recessions.

Depending on fringe’s costs relative to large firms’ and on the possible realizations of demand,

there will be cases in which it is more difficult for firms to sustain (maximal) collusion during

periods of low demand.

Because many commodity markets are characterized by the presence of a relatively large

fraction of small suppliers that will never enter into a collusive agreement, our results have

important policy implications. We cannot rule out, on theoretical grounds, that collusion

efforts by a group of large firms may be welfare enhancing when periods of output-contracting

collusion are followed by periods of output-expanding collusion.7 Based on the aggregate data

of Table 1, we illustrate this possibility in a numerical exercise for the copper cartel of 1935-39.

The rest of the paper is organized as follows. In the next section (Section 2) we present

the model and derive the Nash-Cournot equilibrium. In Section 3 we present the maximal

collusive equilibrium and demonstrate the possibility of an output-expanding collusion (we also

demonstrate that the latter is never the case in a price-setting game). To illustrate this result a

bit further, we simplify our model to establish the conditions for an output-expanding collusion

in terms of (non-collusive) market shares. In Section 4, we study the cartel stability along the

business cycle. The numerical welfare exercise based on the copper cartel data is in Section 5.

6Note that in equilibrium all fringe firms that are called to produce charge the same price which is equal to
the unit-cost of the marginal fringe firm.

7 It is interesting to contrast these observations with recent events in the copper industry. Back in 2001 when
prices were at record low, the three largest firms in the industry made fairly simultaneous announcements of
supply restrictions (either as lower production or inventory holdings) that were eventually carried out. Today,
prices are at record high and some of the same firms are announcing very aggressive expansion plans. Obviously,
in the absence of a more detailed empirical analysis we cannot tell whether these firms are engaged in some sort
of tacit collusion or are rather optimally adjusting their supplies (including capacities and inventories) as they
move from one non-collusive equilibrium to another. Nevertheless, this paper should prove useful in structuring
such an empirical test.
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Concluding remarks follow.

2 Oligopoly-fringe model

2.1 Notation

A group of n identical (strategic) firms (i = 1, ..., n) and a competitive fringe consisting of a

continuum of firms (indexed by j) produce some commodity in an infinite-horizon setting. At

the beginning of each period, firms simultaneously choose their production levels and the price

is cleared (in a metal exchange) according to the inverse demand curve P (θ,Q) = θP (Q) with

P 0(Q) < 0, where Q is total production and θ ∈ [θ, θ] is a demand shock which is observed by
all firms before they engage in production.8 Strictly speaking, only the n strategic firms have

the possibility of choosing among different production levels; a fringe firm’s decision is simply

whether or not to bring its unit of output to the market.9

The production cost of each strategic firm is Cs(qs) with C 0s(qs) > 0 and C 00s (qs) ≥ 0 ("s"
stands for strategic firm). The unit cost of fringe firm j is cj . The cj ’s, which vary across firms,

can be cost-effectively arranged along a marginal cost curve C0f (Qf ) with C00f (Qf ) > 0, where

Qf =
R
qfjdj is fringe firms’ output (we will use capital letters to denote group production and

small letters to denote individual production, so strategic firms’ output is Qs =
Pn

i=1 qsi and

total output is Q = Qs +Qf ).

In several passages of the paper we will introduce, without much loss of generality, some

simplifying assumptions to our model in order to work with closed-form solutions that convey

the intuition in a simpler way. In particular, we will assume that P (Q) = a− bQ, that strategic
firms have no production costs and that the fringe’ aggregate marginal cost curve is C 0f (Qf ) =

cQf , where a, b and c are strictly positive parameters.10

8We consider multiplicative demand shocks (see also Green and Porter, 1984) instead of additive demand
shocks mainly because they better capture the observation that (non-collusive) fringe’s market share generally
expands during booms and contracts during recesions. See also Turnovsky (1976) for a technical discussion.

9Note that in most commodity markets firms make (simultaneous) production decisions largely based on what
they expect prices to be in the next periods. A good example is Salant’s (1976) pioneer model for the oil market.
Assuming otherwise that within each period the n strategic firms move first than fringe firms would require
cooperation among the strategic firms because nothing prevent any of them from moving again together with
the fringe. More importantly, we see no technical reasons for a sequential move, especially if in practice some of
the fringe firms would be not much smaller than some of the strategic firms. Including some fringe firms with
output flexibility complicates the algebra with no implications in the results. It would be interesting, however,
to study more formally the process of cartel formation when there are heterogenous firms.
10That the costs of large firms are, on average, lower than the costs of smaller firms is not a bad assumption

–at least for mineral markets (Crowson, 2003). However, we do not need such assumption for our results and
we only use it for mathematical tractability.
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2.2 The (non-collusive) Nash-Cournot equilibrium

The Nash-Cournot equilibrium of the one-period (simultaneous-move) game, i.e., the equilib-

rium in the absence of any collusion efforts, is found by solving each firm’s problem

max
qsi

θP (qsi +
P
j 6=i

qsj +Qf )qsi − Cs(qsi) for all i = 1, ..., n (1)

qfj =

 1 if cj ≤ θP (Qs +Qf )

0 if cj > θP (Qs +Qf )
for all j (2)

The n first-order conditions associated to (1) give us the best-response of each strategic firm to

the play of all remaining firms. Similarly, (2) summarizes the best-response of each fringe firm,

which is to produce as long as its unit cost is equal or below the clearing price.

Given the symmetry of the problem, the equilibrium outcome of the one-period game is

given by

θP 0(Qnc)Qnc
s /n+ θP (Qnc)− C 0s(Q

nc
s /n) = 0 (3)

θP (Qnc) = C 0f (Q
nc
f ) (4)

where "nc" stands for Nash-Cournot or non-collusive equilibrium and Qnc = Qnc
s +Q

nc
f . Solving

we obtain Qnc
s (θ) and Qnc

f (θ).
11

3 Collusive equilibria

It is well known that in a infinite-horizon setting strategic firms may be able to sustain out-

comes in subgame perfect equilibrium that generate higher profits than the outcome in the

corresponding one-period game. Leaving for later discussion how easy or difficult is for firms

to sustain these collusive outcomes in equilibrium, or alternatively, assuming for the moment

that the discount factor δ (of strategic firms) is close enough to one,12 in this section we are

interested in finding the best collusive agreement for the strategic firms.

11The corresponding quantities for the simplified model are

Qnc
s =

nac

b[c(n+ 1) + θb]
and Qnc

f =
θa

c(n+ 1) + θb

It is immediately seen that ∂Qnc
s (θ)/∂θ < 0 and ∂Qnc

f (θ)/∂θ > 0.
12The discount factor of fringe firms is irrelevant since they always operate along their static best-response

function.
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A natural point of departure in this simultaneous-move game is to compute what we call

the static monopoly outcome that results from taking the group of large firms as a single player

playing a one-period game against the fringe. The equilibrium is obtained from intersecting

the static reaction (best-response) function of the group of fringe firms with the "static best-

response function" of the group of large firms. Based on the works of Fudenberg and Levine

(1989) and Fudenberg, Kreps and Maskin (1990) on repeated games with long-run and short-

run players,13 one might argue that the static monopoly outcome is the best collusive agreement

attainable for the group of large firms if fringe firms are thought to be short-run players that

play only once and in addition have no means to learn about previous play. However, this is a

poor characterization of smaller firms in most commodity markets. As explained by Crowson

(1999), it is common in mineral markets to see smaller firms staying around for as long as

larger firms. It is also the case that smaller firms can learn about previous play without being

physically present, either through word-of-mouth or more likely from written sources.

More importantly, when fringe firms observe previous play it is intuitive that the group of

large firms can strictly improve upon the static monopoly outcome by following (equilibrium)

strategies that are dependent on the possible histories of the game. In other words, the expec-

tations of fringe firms as to what the large firms will produce are now sensitive to previous play

of large firms which in turn allows the group of large firms to credibly communicate its com-

mitment to (profitably) depart from the static monopoly outcome.14 We will refer to the most

preferred of these dynamic outcomes as the maximal collusive agreement. Before describing its

properties, we will present the static monopoly outcome because it will help us to more easily

convey the intuition behind our main result.

13Fudenberg and Levine (1989) is not strictly a supergame as Fudenberg et al.(1990) and ours. They consider
a single long-run player and introduce a bit of uncertainty about its type. It does not seem straightforward
to us how to extend this incomplete information approach to the case of many long-run players each of them
attempting to build reputation.
14Unlike in Fudenberg and Levine (1989) where there is a single long-run player, here we have two or more

large firms which allow them by the threat of falling into a price war, as in Gul (1987) for the durable-good
duopolists, to build commitment despite fringe firms do not observe previous play. This would require, however,
to impose fixed beliefs as to what fringe firms expected large firms to produce in each period. It is more natural
for us to think that fringe firms’ beliefs are not (exogenously) fixed but rather sensitive to past play.
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3.1 Static monopoly outcome

The static best-response function of fringe firms,15 which we denote by the aggregate function

Q∗f (Qs), is implicitly given by θP (Qf + Qs) = C 0f (Qf ). On the other hand, the static best-

response function of the group/cartel of large firms to an aggregate play of Qf by the fringe

firms is given by

Q∗s(Qf ) = argmax
Qs

{θP (Qs +Qf )Qs − nCs(Qs/n)}

Given a discount factor close enough to one, the stability of the cartel of large firms is subgame

perfect and it is assumed here that this is correctly anticipated by fringe firms. Hence, the

static monopoly outcome is obtained from the intersection of Q∗f (Qs) and Q∗s(Qf ). Denoting

by Q0s and Q0f the corresponding equilibrium quantities, we have

θP 0(Q0)Q0s + θP (Q0)− C 0s(Q
0
s/n) = 0 (5)

θP (Q0) = C 0f (Q
0
f ) (6)

where Q0 = Q0s + Q0f .
16 Solving we obtain the static-monopoly equilibrium quantities Q0s(θ)

and Q0f (θ).
17

By comparing equilibrium conditions (3)—(4) with (5)—(6), it holds that

Lemma 1 Q0s(θ) < Qnc
s (θ) and P (Q0(θ)) > P (Qnc(θ)) for all θ.

Proof. Straightforward since P 0(Q) < 0 and n ≥ 2.
This is the conventional view regarding the operation of a cartel in that it always reduces

output to lift prices. In the presence of a competitive fringe there is a caveat, however. When

the fringe’s market share is large enough, it may be optimal for the large firms to stick to the

non-collusive equilibrium (and fringe firms can anticipate that). From conventional monopoly

15Note that since fringe firms are infinitesimally small they always play along their static best-response curve
regardless of their life horizon.
16We have not been explicit about what happens when a large firm deviates from the (collusive) equilibrium

path. A reasonable (subgame perfect) punishment path is a return to Nash-Cournot but with fringe firms playing,
on aggregate, Q0

f (not Q
nc
f ). This is because in this "one-shot game" fringe firms’ beliefs are fixed in that they

expect the large group to always play Q0
s. There are no deviations in equilibrium, however.

17For the simplified model these quantities are

Q0
s =

ac

b(2c+ θb)
and Q0

f =
θa

2c+ θb
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theory, we would say that in such cases large firms do not want to restrict output any further

because they face a (residual) demand that is too elastic. Unfortunately, this result cannot be

easily seen from eqs. (3)—(6) since we need to compute profit levels. Introducing our simplifying

assumptions we can compute π0s and πncs –strategic firm’s profits under static monopoly and

Nash-Cournot, respectively– and obtain18

Lemma 2 π0s(θ) > πncs (θ)⇐⇒ θ < (
√
n− 1)c/b ≡ θ̃

Since fringe’s market share increases with θ (see footnote 11), Lemma 2 states that for

demand shocks sufficiently large it is optimal for large firms to follow Nash-Cournot strategies.

Note that the smaller the value of c and/or n the smaller the range of θ’s where large firms

want to collude, i.e., where θ < θ̃ holds. The reason is that large firms’ (non-collusive) market

share is increasing in n and c.19

Notice that the evolution of the equilibrium as a function of the demand shock θ is consistent

with Herfindahl’s description of the copper cartel of 1935-39. For θ < θ̃ (and provided that any

collusive outcome benefits both large and fringe firms) firms play the static-monopoly quantities

Q0f (θ) and Q
0
s(θ) and for θ > θ̃ they return to the Nash-Cournot quantities Qnc

f (θ) and Q
nc
s (θ).

20

3.2 Maximal collusion

Assuming that all players acting at date t have observed the history of play up to date t, it is

possible to construct history-dependent strategy profiles with payoffs for the large firms that

are strictly higher than those under the static monopoly outcome. While the latter is one

of the multiple possible equilibria in this repeated game, here we are interested in finding the

maximal collusive agreement, that is, the one that gives large firms the highest attainable payoff

for a discount factor close enough to one. Let Qm
s and Qm

f denote the (aggregate) quantities

corresponding to the maximal collusive equilibrium.21

18The profits for the simplified model are

πncs =
θ

b

·
ac

c(n+ 1) + θb

¸2
and π0s =

θ

nb

·
ac

2c+ θb

¸2

19That large firms may find it optimal to remain at their Nash-Cournot levels is not unique to the quantity
competition assumption. In fact, in the Hotelling-city example of the introduction the Nash-Bestrand prices and
the static monopoly prices are the same.
20 If the discount factor is not high enough for large firms to sustain Q0

s(θ), the collusive equilibrium is the one
that implements the most profitable incentive-compatible collusive outcome.
21For the implementation of the maximal collusive agreement consider, for example, the following set of

(symmetric) trigger strategies (which depend on the realization of θ): In period 0, strategic firm i plays Qm
s /n
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Since strategic firms are symmetric and there are no economies of scale, it is optimal for

each strategic firm to produce qmsi = Qm
s /n, hence

Qm
s = argmax

Qs

{θP (Qs +Qf (Qs))Qs − nCs(Qs/n)} (7)

where Qf (Qs) is the fringe’s equilibrium response to Qs, which is implicitly given by

θP (Qf +Qs) = C 0f (Qf ) (8)

Replacing Qf (Qs) from (8) into (7), the strategic firms’ maximal collusive outcome solves

C 00f (Q
m
f )θP

0(Qm)

C 00f (Q
m
f )− θP 0(Qm)

Qm
s + θP (Qm)− C 0s(Q

m
s /n) = 0 (9)

θP (Qm) = C 0f (Q
m
f ) (10)

where Qm = Qm
s +Qm

f . Solving we obtain Qm
s (θ) and Qm

f (θ).
22

Note that having Qf as a function of Qs in (7) resembles a Stackelberg (static) game but

it is only because in this repeated game large firms anticipate and use fringe firms’ equilibrium

response in constructing its optimal action and not because some first-mover advantage. By

comparing equilibrium conditions (3)—(4) with (9)—(10) we can establish

Proposition 1 There is a level of demand θ̂ for which Qm(θ̂) = Qnc(θ̂) ≡ Q̂(θ̂) [and Qm
f (θ̂) =

Qnc
f (θ̂) ≡ Q̂f (θ̂)]. This (unique) level of demand is found by replacing the definitions of Q̂(θ̂)

and Q̂f (θ̂) into θ̂ = −(n − 1)C 00f (Q̂f (θ̂))/P
0(Q̂(θ̂)) and solving. In addition, if θ is greater

(lower) than θ̂, then Qm is greater (lower) than Qnc.

Proof. The first part is straightforward. For Qm = Qnc we need C 00f (·)θP 0(·)/(C 00f (·) −
θP 0(·)) = θP 0(·)/n which rearranged leads to θ = −(n − 1)C 00f (·)/P 0(·). For the second part,
note that if we are at θ = θ̂ and let it go up by a marginal amount the term C 00f θP

0/(C00f − θP 0)

in (9) suffers a smaller (first-order) decrease (recall that P 0 < 0) than the term θP 0/n in (3).

and fringe firms play, on aggregate, Qm
f . In period t, firm i plays Qm

s /n if in every period preceding t all strategic
firms have played Qm

s /n; otherwise it plays Q
nc
s /n. Fringe firms, on the other hand, play Qm

f in t if in every
period preceding t all strategic firms have played Qm

s /n; otherwise they play Q
nc
f .

22For the simplified model these quantities are

Qm
s =

a

2b
and Qm

f =
θa

2(c+ θb)
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Consequently, Qm
s must be somehow larger than Q

nc
s (and, hence, Qm larger than Qnc) for both

(3) and (9) to continue holding. Similar arguments apply for θ < θ̂.

This proposition opens up the possibility for an output-expanding collusion provided that θ̂

exists, i.e., θ̂ ∈ [θ, θ], which will always be the case for C00f (·) sufficiently small. More interesting,
the collusive agreement may include both output expansions (above Nash-Cournot levels) during

periods of higher demand (i.e., θ > θ̂) and output contractions during periods of lower demand.23

In providing more intuition for our results, it is useful to present the following result first

Proposition 2 Were the strategic and fringe firms competing in prices (with some product

differentiation), it would have been never optimal for the strategic firms to jointly price below

their (non-collusive) Nash-Betrand price levels.

Proof. See the Appendix.

Propositions 1 and 2 indicate that an output-expanding, or equivalently, a price-reducing

collusion, is only a possibility under quantity competition and never under price competition.

This observation, which is the central finding of the paper, can be understood as the balance of

two effects that in price competition work in the same direction while in quantity competition

work in opposite directions. We can think of the first effect as a static effect. In a one-shot

simultaneous-move game the best collusive outcome for the group of large firms is the static

monopoly outcome of Section 3.1 which always have large firms reducing output (increasing

prices) below (above) their Nash-Cournot (-Bertrand) levels.24

The second effect is a dynamic effect that comes from the fact that in a repeated game the

group of large firms can use history-dependent strategies to credibly build commitment towards

the implementation of a better outcome than the one-shot simultaneous-move outcome.25 Un-

like the static effect, the dynamic effect works in opposite directions depending on the type

of competition and is because of the strategic sustitutability of quantities versus the strategic

complementarity of prices (see Bulow et al., 1985; and Fudenberg and Tirole, 1984).

23Note that had we adopted additive demand shocks, that is, P (θ,Q) = P (Q)+θ, the collusive aggrement would
have exhibited either output contractions or expansions throughout and depending on whether −(n− 1)C00

f /P
0

is greater or lower than the unity.
24 It is true, as seen in Section 3.1., that when the demand shock is above certain level which we denote by θ̃ it

is optimal for large firms to remain at their Nash-Cournot levels. But it is useful for understanding Propositions
1 and 2 to keep in mind that if the large firms were to continue operating jointly beyond θ̃ the best outcome is
still to produce below their otherwise Nash-Cournot levels. In other words, the static effect, as we define it, is
still present beyond θ̃, although diminishing.
25This is equivalent to the reputation effect of Fudenberg and Levine (1989) for the case of a single (long-run)

player playing a simultaneous-move stage game against a sequence of short-run opponents (i.e., that play only
once).
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When firms compete in prices and large firms jointly lower (increase) their prices, fringe

firms’ equilibrium response is to lower (increase) theirs. Note from eq. (16) in the Appendix

that ∂pf (ps1, .., psn)/∂psi > 0 for all i, where pf and psi are, respectively, the prices charged

by fringe firms and strategic firm i. Knowing this, the dynamic effect makes large firms to

price even higher relative to the static-monopoly outcome. On the other hand, when firms

compete in quantities and large firms jointly increase their productions, fringe firms’ equilibrium

response is not to increase their quantities but to reduce them (note from (8) that Q0f (Qs) =

θP 0(Qm)/[C 00f (Q
m
f )− θP 0(Qm)] < 0). The dynamic effect now makes strategic firms to expand

their production taking advantage of fringe’s contracting response.26

Whether it is optimal for strategic firms (competing in quantities) to follow an output-

expanding collusion or not, at least for some levels of demand, will depend on whether the

dynamic effect dominates the static effect. The dynamic effect is always present and possibly

increasing in θ while the static effect diminishes with θ; hence, it is natural to think of some

demand level θ̂ at which both effects cancel out.

3.3 Market shares and output-expanding collusion

Proposition 1 opens up the possibility for an output-expanding collusion but does not say

much on the conditions under which this is likely to happen (i.e., on the existence of θ̂). For

that purpose, let us use the simplified version of our model, i.e., P (Q) = a − bQ, Cs(qs) = 0

and C 0f (Qf ) = cQf . From Proposition 1, the level of demand for which the optimal collusive

outcome coincides with the Nash-Cournot outcome is now θ̂ = (n − 1)c/b.27 Consequently, a
collusive agreement among the strategic firms will lead to higher output (and, hence, to lower

prices) as long as θ > (n − 1)c/b; a condition that can be conveniently expressed in terms of
Cournot market shares as follows28

Qnc
f

Qnc
>

n− 1
2n− 1 (11)

26To understand this further, think of a holding company that owns all of the large firms. The (Nash-Cournot)
outcome of the one-period simultaneous-move game between this holding company and the fringe is the static
monopoly outcome derived in Section 3.1 (note that there is no longer a θ̃ in that game). In a simultaneous-move
repeated game and where fringe firms observe all previous play the holding company can do strictly better by
committing to a larger (Stackelberg) quantity in all possible demand realizations (provided that the discount
factor is close enough to one).
27Note from Lemma 2 that θ̃ < θ̂ which may call some readers’ attention. The reason is that the static effect

is still present beyond θ̃ and is only at θ̂ when is exactly offset by the dynamic effect.
28See footnote 11 for the values of Qnc

f and Qnc
s .
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When the fringe’s market share in the Nash-Cournot equilibrium is larger than (n−1)/(2n−1),
the group of strategic firms faces such a elastic (residual) demand that it is optimal for them

to coordinate in an output-expanding collusive agreement.

Since the fringe’s market share is increasing in θ and decreasing in c, condition (11) is more

likely to hold when the demand is large and the fringe is more efficient (i.e., has low c). For

example, if n = 2 the collusive agreement will take the conventional output-contracting shape

only when the fringe’s market share is less than 1/3. More generally, any time the fringe’s

Cournot market share is above 1/2 the collusive agreement is to expand output above Cournot

levels regardless of the number of firms. These results have also implications for understanding

the shape that can take a collusive agreement among a subset of (heterogeneous) strategic

firms. The fewer the strategic firms taking part in the collusive agreement the more likely it

will contain at least some periods of (collusive) output expansion.

4 Collusion over the business cycle

We have characterized the maximal collusive agreement but said nothing on how difficult is for

the strategic firms to sustain such an agreement under varying demand conditions. The question

of whether is more difficult for firms to sustain collusion during booms than during recessions

(or vice versa) has received a great deal of attention in the literature after the pioneers works

of Green and Porter (1984) and Rotemberg and Saloner (1986). Since our intention is not to

provide a discussion of how all existing results could change with the introduction of a (large)

fringe, we follow Rotemberg and Saloner’s (1986) in that demand is subject to (observable) i.i.d.

θ shocks. We also assume that all (strategic) firms use the same factor δ ∈ (0, 1) to discount
future profits.

For maximal collusion to be sustained throughout the business cycle it must hold for all θ

and for each strategic firm that the profits along the collusive path be equal or greater than the

profits from cheating on the collusive agreement and falling, thereafter, into the punishment

path, that is

πm(θ) + δV m ≥ πd(θ) + δV p (12)

where V m is the firm’s expected present value of profits along the collusive path, πd(θ) is the

profit obtained by the deviating firm in the period of deviation and V p is the firm’s expected

present value of profits along the punishment path. Although in principle the punishment path

13



can take different forms (which may include return to collusion after some period of time),

reversion to Nash-Cournot appear to us as most reasonable, particularly because of the fringe

presence. Expression (12) adopts this view.29

It is important to notice that the direction of the deviation from the collusive agreement vary

along the business cycle. If the deviation occurs sometimes during the output-contracting phase

of the collusive agreement (i..e, when θ < θ̂), the optimal deviation is to increase output (i.e.,

move in the Nash-Cournot direction). But if deviation occurs sometimes during the output-

expanding phase (i..e, when θ > θ̂), the optimal deviation is to reduce output below the collusive

level. This invites us to speculate, at least in theory, about the possibility that a fringe firm

could sabotage one of the strategic firms’ production sufficiently enough as to force the latter

to implement an (optimal) deviation and, hence, trigger a return to Nash-Cournot prices.30

We can now use (12) to obtain the discount factor function δ(θ) = (πd(θ)−πm(θ))/(V m−V p)

that establishes the minimum discount factor needed to sustain maximal collusion at θ provided

that maximal collusion is sustained at all other θ’s. Then, the critical demand level θc at

which becomes most difficult for firms to sustain maximal collusion can be defined as θc =

argmaxθ δ(θ). In other words, firms can sustain maximal collusion throughout the business

cycle only if δ ≥ δ(θc).

For better illustration of θc, let us adopt, without much loss of generality, the previous

simplifying assumptions of linear demand and costs, which will allows us to obtain tractable

expressions for πd(θ) and πm(θ). Solving we obtain31

δ(θ) =
θ[(n− 1)c− θb]2

(c+ θb)2
K (13)

where K = a2/16n2b(V m − V p).

The function δ(θ) is plotted in Figure 1, which exhibits a local maximum at 0 < θ1 < θ̂ and

a global minimum at θ̂ –when maximal collusion reduces to the Nash-Cournot outcome. Note

that δ(θ) has been drawn without paying attention to the fact that the support of θ is some

subset [θ, θ] of <+. Despite both V m and V p depend on the actual support (and distribution)

29We also consider the optimal penal codes of Abreu (1986, 1988) and find no qualitative changes in our results.
30Obviously, the incentive for a strategic firm’s to sabotage the production of another strategic firm are always

smaller than the incentives to deviate from the collusive aggrement itself because the sabotage (regardless of
whether it is detected or not by the affected firm) involves the simultaneous deviation of two firms which is
always less profitable than the deviation of a single firm.
31πd(θ) = θb[qd(θ)]2, where qd(θ) = a[c(n + 1) + θb]/4nb(c + θb) is the optimal deviation when each of the

remaining strategic firms are playing Qm
s /n.
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of θ, they enter as constant terms in (13), so changes in the support (and/or distribution) of θ

will only scale δ(θ) up or down with no effects on the discussion that follows (e.g., θ1 and θ2

are independent of θ and θ).

Going back to Figure 1, if 1 > δ ≥ δ1 and θ ≤ θ2 firms will be able to sustain maximal

collusion throughout; otherwise there will be critical times at which less than maximal collusion

can be sustained. Depending on the values of θ and θ one can construct cases in which the

critical time is either at booms (e.g., [θ = 0, θ = θ1], [θ = θ̂, θ > θ̂]) or at recessions (e.g.,

[θ = θ1, θ = θ̂]). The latter example is most interesting because even if we restrict attention to

output-contracting collusion, that is, θ ≤ θ̂, we do not need invoke Green and Porter’s (1984)

imperfect monitoring to generate price wars at recessions.32 We summarize these findings in

the following proposition.

Proposition 3 Depending on the range of demand shocks and on the fringe’s costs, the time

at which is more difficult for large firms to sustain maximal collusion can be either at booms or

recessions.

The above result is not restricted to our simplifying assumptions but entirely hinges on the

fact that there exists a demand level θ̂ at which the collusive and the non-collusive outcomes

are indistinguishable, so collusion for any nearby θ is easily sustained. As we increase fringe’s

cost parameter c, θ̂ moves to the right and eventually falls outside the support of θ. In the

limit, when c goes to infinity and, hence, the fringe’s market share goes to zero, we return to

Rotemberg and Saloner’ (1986) prediction that in the absence of fringe firms collusion is more

difficult to sustain during booms (i.e., at the largest θ).33

5 Welfare: A numerical exercise

One of the main implications of our results is that the effect of collusion on welfare is to be

signed on a case-by-case basis. If Herfindahl’s behavioral hypothesis is correct, the copper cartel

of 1935-39 had an unambiguous negative impact on welfare. But this is not necessarily so if one

believes the cartel was also able to sustain collusion during booms. To illustrate this possibility,

consider the following numerical exercise. Assume that the cartel was able to sustain maximal

32The Bagwell and Staiger’s (1997) model of serially correlated demand shocks is also able to generate price
wars at recessions for some parameter values.
33 limc→∞ δ(θ) = θ(n − 1)2K, where K = a2/16n2b(V m − V p) but Vm and V p correspond to the values of

no-fringe case.
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collusion in each of the six periods described in Table 1 and use the price and quantity data of

each of those periods to recover cost and demand parameters. Then, use these parameters to

predict what would have been the non-collusive equilibrium in each period.

In carrying out the exercise, we assume that (i) the five cartel members are identical, (ii)

the demand in period t = 1, ..., 6 is Pt(Qt, θt) = θt(a − bQt), (iii) the marginal cost function

of each of the cartel members is cstq
γ
st, and (iv) the fringe’s marginal cost function is cftQ

δ
ft.

The parameters to be estimated are θt, a, b, cst, γ, cft, δ. We have more parameters than

equilibrium equations so we are forced to make some (reasonable) arbitrary selections. We set

b = 0.7 to work with demand elasticity numbers around −0.35; similar to those in Agostini
(2005) and the studies cited therein. In addition, we set γ = δ = 0.4. We do not have a good

reason to differentiate between γ and δ and these numbers produce less variation among the

ckt’s (k = s, f), which we think should not vary much in a four-year time frame. Besides, lower

numbers (e.g., γ = δ = 0.1) produce the unreasonably scenario of output-expanding collusion

at all periods while higher numbers (e.g., γ = δ = 0.7) result not only in wide variation among

ckt’s but also in some negative cft’s. We also normalize the demand shocks to the apparently

largest shock, that is, θ3 = 1.

Results, which are merely for illustrative purposes and not aimed at testing hypothesis, are

reported in Table 2. The next three columns following the period column show demand and

costs parameters for the six periods.34 In the fifth, sixth and seventh columns we reproduce

the (assumed) maximal collusion levels of Table 1 (quantities are again at their annual rates)

to facilitate the comparison with the hypothetical Nash-Cournot levels of the following three

columns. As predicted by our theory, the non-collusive prices are lower during recessions (t =

1, 2, 4 and 6) but higher during booms (t = 1 and 5). Furthermore, the average non-collusive

price (weighted by the number of months in the period) is almost equal to the average collusive

price (10.3 vs. 10.4). Provided that collusion prices are less volatile and that a one cent off

during booms add more to consumer surplus than a one cent off during recessions, it may well

be that the copper cartel of 1935-39 did not have a negative impact on welfare but the opposite.

Obviously, this is just an hypothesis that has yet to be tested econometrically.

34Notice the variation of the cartel firms’ cost parameters (i.e., cs’s), particularly the low numbers in t = 3 and
5. Besides indicating that even lower numbers (i.e., higher variation) would have resulted had we assumed return
to Nash-Cournot during these two booms, it may be that these low numbers reflect an asymmetric expansion
with greater participation of lower cost firms.
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6 Final remarks

Following the structure of many commodity markets, we have studied the properties of a col-

lusive agreement when this is carried out only by the largest firms of the industry. We have

found that as the (non-collusive) market share of the noncartel firms increases relative to the

large firms’, it may be optimal for the latter to jointly produce above their non-collusive levels.

Consequently, we cannot rule out, at least in theory, the possibility of a welfare-enhancing col-

lusive agreement in which periods of output-contracting collusion are accompanied by periods

of output-expanding collusion.

We also found that due to the presence of a significant fraction of noncartel firms (i.e., fringe

firms), we do not need Green and Porter’s (1984) imperfect information to generate price wars

in recessions (i.e., procyclical pricing). More generally, it may be equally difficult for large firms

to sustain maximal collusion during booms than during recessions. It would be, nevertheless,

interesting to extend the model to the case of imperfect information.

There are other theoretical extensions worth pursuing. So far we have assumed that large

firms have sufficient flexibility to expand production as needed. While this seems to be less

of a problem for the international copper cartel of 1935-39 thanks to the excess capacity left

by the 1929-33 world contraction,35 the introduction of capacity constraints is likely to affect

the properties of the collusive agreement (Staiger and Wolak, 1992). One can go even further

and study altogether collusion in output and capacity (recall that in these markets firms are

constantly expanding their capacities to cope with depreciation and new demand). This surely

opens up the possibility for a capacity-expanding collusion even when firms set prices in the

spot market. In addition to capacity constraints, the opportunity of forward contracting part

of future production can also have implications for the collusive agreement (Liski and Montero,

2005).

Finally, it would be most interesting to carry out an empirical analysis of the copper cartel

of 1935-39 along the works of Porter (1983) and Ellison (1994) and test for periods of output-

expanding collusion. One important difference with these previous studies is that we not only

need to econometrically distinguish between regimes of (output-contracting) collusion and price

wars (i.e., return to Nash-Cournot) but perhaps more difficult between regimes of output-

expanding collusion and price wars.

35 It would also be less of a problem if large firms manage, as in mineral markets, an in-house inventory to be
built up during recessions and withdrawn during booms.
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Appendix: Proof of Proposition 2
Consider a group of n strategic firms (i = 1, ..., n) and a competitive fringe consisting of

a continuum of firms (indexed by j) engaged in a simultaneous price-setting game of infinite

horizon. Strategic firms produce differentiated goods at the same cost Cs(qsi). Fringe firms

produce a homogenous good according to the aggregate marginal cost curve C 0f (Qf ) (as before,

a fringe firm’s unit-cost is denoted by cj). Strategic firm i’s demand is qsi ≡ Dsi(psi,p−si, pf ),

where p−si is the vector of prices charged by the remaining strategic firms and pf is the price

charged by all fringe firms (it should be clear that in equilibrium pf will be equal to the unit-

cost of the most expensive fringe firm that entered into production, that no fringe firm with a

unit-cost equal or lower than pf would want in equilibrium to charge anything different than

this price, and that no firm with unit-cost higher than pf would want to charge lower than

pf ). Fringe aggregate demand is Qf = Df (pf ,ps), where ps = (ps1, ..., psn) is the vector of

prices charged by strategic firms. It is also known that ∂Dk/∂pk < 0, ∂Dk/∂p 6=k > 0, and

|∂Dk/∂pk| > |∂Dk/∂p6=k|.
The (non-collusive) Nash-Betrand equilibrium of the one-period game is obtained by simul-

taneously solving each firm’s problem

max
pi

Dsi(psi,p−si, pf )pi − Cs(Dsi(psi,p−si, pf )) for all i = 1, ..., n

pfj =

 pf if cj ≤ pf

> pf if cj > pf
for all j

Then, the Nash-Bertrand equilibrium outcome is given by

Dsi(p
nb
si , p

nb
−si, p

nb
f ) + [p

nb
si −C 0s(Dsi)]

∂Dsi

∂psi
= 0 (14)

C 0f (Df (p
nb
f ,pnbs )) = pnbf

On the other hand, and following Section 3.2, the maximal collusive outcome for the strategic

firms is obtained by solving

max
ps1,...,psn

nX
i=1

{Dsi(psi,p−si, pf (ps))pi −Cs(Dsi(psi,p−si, pf (ps)))} (15)
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where pf (ps) is implicitly given by the fringe’s equilibrium response

C 0f (Df (pf ,ps)) = pf (16)

Using the latter, the first-order conditions associated to the optimal collusive outcome can,

after rearranging some terms, be written as

Dsi(p
m
i , p

m
−i, p

m
f ) +

nX
k=1

[pmsi − C 0s(Dsk)]

µ
∂Dsk

∂psi
+

∂Dsk

∂pf

∂pf
∂psi

¶
= 0 for all i = 1, ..., n (17)

and C 0f (Df (p
m
f ,p

m
s )) = pmf .

Given that ∂pf/∂psi > 0, the difference between (17) and (14) is a stream of various positive

terms (those price effects internalized in the collusive agreement); therefore, it is immediate

that Dsi(p
m
i , p

m
−i, p

m
f ) < Dsi(p

nb
i , pnb−i, p

nb
f ) for all i = 1, ..., n, and with that, Df (p

m
f ,p

m
s ) <

Df (p
nb
f ,pnbs ). Note that in the Hotelling example of the introduction, the strategic firms do not

directly face each other, so ∂Ds1/∂ps2 = ∂Ds2/∂ps1 = 0.
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Table 1. Evolution of the copper cartel of 1935-1939 
  Cartel production    Noncartel production London spot price     
 
 

Period 

 
Quota 
status 

Production 
(annual 

rate) 

Per cent 
change from 

preceding 
period 

Production 
(annual 

rate) 

Per cent 
change from 

preceding 
period 

Cents 
per 

pound 

Per cent 
change from 

preceding 
period 

1. July—Dec. 1935 Quotas 559  408  8.2  
2. Jan.—Dec. 1936 Quotas 598 +7.0% 368 -9.8% 9.5 +16% 
3. Jan.—Nov. 1937 No Quotas 917 +53.4 439 +19.3 13.4 +41 
4. Dec. 1937—Sept. 1938 Quotas 762 -16.9 481 +9.6 9.7 -28 
5. Oct. 1938—Dec. 1938 No Quotas 948 +24.4 504 +4.8 10.6 +9 
6. Jan. 1939—July 1939 Quotas 736 -22.4 511 +1.4 10.0 -6 
Source: Table 3 of Herfindahl (1959, p. 115) 
 
 
 
 
 
 
Table 2. Collusive and non-collusive equilibria for the copper cartel of 1935-39 

t θ cs cf Qs
m Qf

m Pm Qs
nc Qf

nc Pnc 
1 0.23 2.19 2.00 559 408 8.2 679 337 7.6 
2 0.27 2.31 2.41 598 368 9.5 739 290 8.6 
3 1.00 1.44 3.16 917 439 13.4 847 498 14.0 
4 0.49 1.75 2.22 762 481 9.7 798 457 9.5 
5 1.36 1.12 2.38 948 504 10.6 624 800 12.8 
6 0.51 2.02 2.22 736 511 10.0 743 508 9.9 

Note: a = 92.5. 
 
 
 



Figure 1. Critical time for maximal collusion 
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