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Abstract 

Any investor in assets that can be exploited sequentially faces a tradeoff between 
diversification and concentration.  Loading a portfolio with correlated assets has the 
potential to inflate variance, but also creates information spillovers and real options that 
may augment total return and mitigate variance.  The task of optimal portfolio design is 
therefore to strike an appropriate balance between diversification and concentration.  We 
examine this tradeoff in the context of petroleum exploration.  Using a simple model of 
geological dependence, we show that the value of learning options creates incentives for 
explorationists to plunge into dependence; i.e., to assemble portfolios of highly correlated 
exploration prospects.  Risk-neutral and risk-averse investors are distinguished not by the 
plunging phenomenon, but by the threshold level of dependence that triggers such 
behavior.  Aversion to risk does not imply aversion to dependence.  Indeed the potential 
to plunge may be larger for risk-averse investors than for risk-neutral investors.  To test 
the empirical validity of our theory, we examine the concentration of bids tendered in 
petroleum lease sales.  We find that higher levels of risk aversion are associated with a 
revealed preference for more highly concentrated (i.e., less diversified) portfolios. 
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portfolio choice, learning options, risk aversion, entropy 
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Rational Plunging and the Option Value of Sequential Investment: 
The Case of Petroleum Exploration 

1.  Introduction 
 

Within the realm of real investments, we argue that the portfolio diversification 

motive is diminished by the effect of information spillovers.  By linking the values of 

related investments, such spillovers create learning options that supplement the intrinsic 

value of the underlying assets.  If linked investments are available, but portfolio funds are 

instead spread across diversified (uncorrelated) assets, then the value of these options is 

sacrificed, which has the effect of reducing the mean return, as well as its variance.  

When the impact of information spillovers is taken into account, the task of optimal 

portfolio design is therefore to strike an appropriate balance between the opposing 

incentives for concentration and diversification.  Where that balance falls, and what that 

implies about the investment behavior of risk-neutral and risk-averse investors, is the 

subject of this paper. 

For concreteness, we pose the problem from the perspective of an investor who 

would assemble a portfolio of petroleum exploration prospects; i.e., a set of tracts which 

can be drilled for oil.  Prospects included in the portfolio may or may not have correlated 

exploration outcomes, depending upon which tracts are selected.  Although some of our 

assumptions will be specific to the petroleum industry, the nature of our conclusions and 

the general principles upon which they rest have broader relevance.  At the heart lies the 

inevitable tradeoff between structuring a portfolio to exploit option value and structuring 

a portfolio to minimize variance. 

Petroleum exploration provides a useful illustration because it allows us to 

specifically address a rule-of-thumb that crops up repeatedly in the oil business:  “drilling 
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related prospects increases risk.”  A further advantage of working in the context of 

exploration prospects is that statistical models have already been developed that give 

specific meaning to the concept of “information spillovers” among related geological 

tracts and we are able to build directly on that literature.  Moreover, we are able to exploit 

a large data set that describes the structure and composition of petroleum exploration 

portfolios pursued by oil companies in the course of federal lease auctions, and this 

provides a suitable laboratory for testing the main implications of our model. 

Overview of the Model: 

 Consider an investor who holds the right to explore N petroleum prospects.  

Exploration is risky.  Probability of success on the ith prospect is denoted pi, and the value 

of a success is Vi.  We assume the cost of exploration, C, to be the same for each 

prospect; and without further loss of generality set C=1.  The expected value of the ith 

prospect is then: 

 Ei  =  piVi – 1. 

 The risk and return of this portfolio, and therefore its value to the investor, 

depends on the expected values of its components, but also on the investor’s risk 

tolerance and the extent to which the individual exploration outcomes are interrelated.  In 

this paper we assume the prospects are interrelated via positive dependence, and that the 

investor’s preferences can be represented by a mean-variance utility function, U(·). 

 By positive dependence, we mean that the probability of success on any one 

prospect is directly related to the outcome of exploration on the others.  If Si = 0, 1 

denotes failure or success on the ith prospect, then the outcome of an exploration 

sequence can be represented by the random vector S = (S1, S2, …, SN), with joint 
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probability function given by f(S) = f(S1, S2, …, SN).  We further assume the N prospects 

are exchangeable (i.e., statistically indistinguishable) which means that f(S) is symmetric 

in its arguments.1  This allows us to drop subscripts and write pi = pj = p and Vi = Vj = V, 

for all i and j. 

 We also assume—and this is critical—that the prospects can be exploited 

sequentially; the outcome of the first prospect can be observed before investing in the 

second, etc.  The investor therefore holds a set of N options, each of which corresponds 

to the decision whether or not to explore a given prospect.  Positive dependence creates 

information spillovers, and the decision to exercise each option is informed by the 

outcomes of options that have been exercised previously.   

 We assume that each prospect would be explored on its own merits, if not part of 

a portfolio.  That is, if there were no information spillovers, all N prospects would be 

explored.  In the case of risk neutrality, this simply means that the expected value of each 

prospect is positive—they are all “in the money.”  Given the existence of information 

spillovers, a passive (but not unprofitable) strategy would therefore be to explore all N 

prospects, regardless of intervening exploration outcomes.  We represent the monetary 

return to the passive strategy by the random variable Π°, with mean value E[Π°] = N(pV-

1) ≥ 0.  An active strategy, in contrast, would take stock of intervening exploration 

successes and failures, update probabilities accordingly, and terminate the sequence when 

the expected utility of continuing to explore becomes negative.  We represent the 

monetary return to the active strategy by the random variable Π* with mean E[Π*].  It 

then follows that E[U(Π°)] ≤ E[U(Π*)]. 

                                                 
1 In Smith and Thompson (2004), we examine some implications for sequential investment strategies of 
heterogeneity among the N prospects.   
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 We will show that if positive dependence is strong enough, the preceding 

inequality is strict, E[U(Π°)] < E[U(Π*)]; i.e., active management commands a premium.  

However, our primary purpose is not to demonstrate the superiority of active 

management of the prospect inventory, but to examine the impact on portfolio value of 

the degree of dependence among prospects.  Since the initial part of management’s job is 

to identify prospects and assemble the portfolio, and since many prospects are available 

at any given time—some interdependent, others not—the degree of dependence among 

prospects included in the portfolio represents a choice that is part of the utility 

maximization process.2   

 We will also show, under a broad range of assumptions regarding the degree of 

risk inherent in exploration, and regardless of the investor’s degree of risk aversion, that 

the agent would choose to assemble a portfolio of dependent prospects.  Relative to a 

comparable portfolio of independent (i.e., geologically diversified) prospects, a portfolio 

of dependent prospects has higher expected utility and therefore higher value.  Moreover, 

we find that strong incentives exist for “plunging” behavior; i.e., making portfolio 

selections that maximize the degree of dependence among prospects.   

 Our findings might appear to defy the conventional wisdom that “dependencies 

increase the exploration risk,” but in fact the two are entirely consistent.3  Increasing the 

degree of dependence, while holding constant the marginal probability of success, creates 

a mean-preserving spread in the distribution of exploration outcomes.  Dependence 

causes good or bad outcomes to cluster together, which creates volatility.  The variance 

                                                 
2 Higher dependence is obtained by assembling prospects that are more closely related in geological terms; 
lower (or zero) dependence is obtained by assembling prospects that are geologically unrelated. 
3 The quotation is from Delfiner (2000), page 5.  The argument that dependence increases exploration risk 
has also been set forth by Stiglitz (1975, p. 69), Murtha (1996, pp. 41-42) and Erdogan et. al. (2001, p. 3). 
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of the total number of successes rises but the mean remains constant—at least if the 

passive strategy is employed.  By using information spillovers to truncate ill-advised 

exploration investments, active management is able to transform the extra volatility 

created by dependence into added portfolio value.   

 This points to the central question of our research:  If we fix N, V, and p (which 

ensures that the intrinsic value of the portfolio is held constant), how much dependence is 

“optimal,” in the sense of maximizing an investor’s expected utility?  Under what 

conditions would an investor prefer to diversify holdings and thereby minimize (or 

eliminate) positive dependence?  Under what conditions would it be better to concentrate 

holdings in related assets and thereby increase (or maximize) dependence?  To what 

extent should risk-averse agents be expected to behave differently than risk-neutral 

agents in this regard?  And, finally, to what degree are the theoretical implications of our 

analysis supported by empirical evidence? 

2.  Related Literature 

 Our work relates to several strands of previous research.  Starting with Peterson 

(1975), Stiglitz (1975), and Gilbert (1979, 1981), several important implications of 

information externalities in private exploration have already been examined.4  These 

earlier studies focused primarily on questions of economic efficiency and identified 

potential distortions created by information spillovers.  They demonstrated (from the 

social point of view) that either too much or too little exploration could result, depending 

on how much of the information gleaned from exploration conducted by one party spills 

                                                 
4 Allais’s (1957) pioneering work on the economics of mineral exploration in the Sahara Desert had already 
dealt with the problem of modeling exploration outcomes on adjoining tracts; but by defining the tracts to 
be sufficiently large, he was able to reasonably assume that the exploration outcomes on adjacent tracts 
would be independent.  In that instance, there would be no spillovers. 
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over to benefit other owners of property located in the vicinity.5  Grenadier (1999) took 

this idea further via a model that applies to oil exploration (as well as other competitive 

settings) in which proprietary information is revealed indirectly by one party’s 

investment decisions.  A similar idea, where private information is likewise conveyed via 

investment decisions, was developed by Thijssen, Huisman, and Kort (2001).  In both of 

those papers, the research focus remains on the welfare implications of potential 

distortions caused by the externality.  In contrast, we examine the impact of information 

spillovers and risk aversion on the composition of privately assembled asset portfolios. 

 Other papers have examined certain “portfolio” aspects of capital budgeting and 

project selection, especially in the sphere of research and development.  Until relatively 

recently, these consisted mostly of attempts to produce an efficient frontier in the manner 

of Markowitz, by which is indicated the combination of projects that would minimize the 

variance of outcomes subject to a constraint on total expected return.  If the separate 

research projects are deemed to be independent, this approach is straightforward, but then 

the impact of information spillovers has been omitted.  Galligan (1991) and Erdogan 

(2001) exemplify this branch of research, in which possible interdependencies among 

projects under consideration are simply neglected.  Other studies have employed linear 

programming and integer programming approaches to select projects, subject to resource 

constraints, that maximize total expected return without regard for the variance.6  These 

methods assume implicitly that the projects under consideration are additive with no 

substantial interactions.  Chien (2002), on the other hand, cited project interactions as a 

                                                 
5 In addition to the efficiency effects of what we may call “local information externalities”, Stiglitz (1975) 
and Gilbert (1978,1979, 1981) explore the social value of global exploration information pertaining to the 
total remaining stock of a depletable resource.   
6 Gear, Lockett, and Pearson (1971) review and summarize some representative models of this type.   
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primary cause of the difference between the preference for a portfolio of R&D projects as 

a whole and the preference for the individual projects, and described four types of project 

interactions that might be taken into account.7   

 Within the literature on real options, some types of interactions among multiple 

options have been studied intensively.  Roberts and Weitzman (1981) considered the 

value of a set of investment options to extend and refine a given R&D project and 

formulated an optimal stopping rule for investment.  Where exercise of one option is a 

prerequisite for the next, as in Roberts and Weitzman’s model, interdependence between 

the different stages of the project is direct and the method of compound options can be 

used to value the project as a whole.  More generally, Trigeorgis (1993) and Kulatilaka 

(1995) have demonstrated that when multiple options are written on the same underlying 

asset, the potential for interference (substitutability) or reinforcement (complimentarity) 

may cause the value of the collection of options to either exceed or fall short of the sum 

of their stand-alone values.  Exercising an option to abandon a given project, for 

example, forecloses the option to expand.  Additivity of option values is not assured.  

Koussis, Martzoukos, and Trigeorgis (2003) have recently formulated a more 

comprehensive model that allows management to take multiple learning and value-

enhancing actions prior to implementing a given project.  Again, these actions represent 

options that are written on a single underlying asset and therefore tend to interact in ways 

that destroy additivity.  The authors argue that the value of the collection of options will 

                                                 
7 There exists an entirely different approach to portfolio decisions, typified by Linton, Walsh, and Morabito 
(2002), that combines objective and subjective multi-criteria rules by which separate projects may be 
ranked.  Although these methods may be ideal for comparison of projects that have many different non-cost 
and non-numeric aspects to consider, they are not well suited for the analysis of quantitative investment 
problems where profit is the clear objective. 
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generally tend to be less than the sum of their separate values, but the converse may 

sometimes be true. 

 Several papers have examined interactions among multiple options written on 

distinct and separate underlying assets.  Keeney (1987), for example, investigated the 

impact of positive dependence regarding the performance of alternative sites on the value 

of a portfolio of locations being studied for possible use as a nuclear waste repository.  

Keeney demonstrated that dependence among sites, plus the ability to process sites in 

sequence, created an option to truncate investment, and the value of this option 

contributed significantly to the value to the portfolio.  Also like us, Keeney argued that 

the source of interdependence stemmed (at least in part) from shared geological 

characteristics.  Kester (1993) presents and solves a numerical illustration in which a firm 

must consider whether or not to launch each of several new products.  If the success or 

failure of each new product would foretell the probability of success or failure of the 

others, then the optimal sequence of product introductions must take into account the 

impact of these information spillovers.  Childs, Ott, and Triantis (1998) examined the 

effect of interrelationships between two projects that may be carried out either 

sequentially or in parallel, and showed that the optimal investment program (and 

combined value) is highly sensitive to the type of interdependence that links the two 

projects.  Brosch (2001) emphasized the real-world prevalence of firms that hold 

interrelated options on multiple underlying assets and established by example (involving 

two projects) that the type of “inter-project compoundness” that exists in such cases may 

lead to a considerable deviation from value additivity.   
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 These last four papers perhaps come closest to our work, at least in terms of 

focusing on interactions among multiple options that have been written on distinct and 

separate underlying assets.  In this sense, the problem we examine involves a true 

portfolio of distinct assets, not simply a collection of options that all impact the same 

underlying asset.  With the exception of Keeney, each of these earlier papers took the 

composition of the portfolio as given, however, and proceeded to analyze how it could be 

optimally managed.  Like Keeney, we inquire as to management’s initial incentive to 

assemble one type of portfolio rather than another—taking into account the impact of 

interdependence among assets, the value of real options thereby created, and the degree 

of risk aversion on the part of the decision-maker. 

3.  Partially Shared Risks:  A Model of Multivariate Dependence 

 Many distinct notions of multivariate positive dependence have been advanced in 

the statistical literature, based on different measures of the tendency of random variables 

to assume concordant values.8  For our purpose, it seems appropriate to treat information 

spillovers according to the model of “partially shared” risks, which is a probability 

structure that divides exploration risk into two parts:  one that is unique to each prospect 

and another that is common to all prospects located within the same geological trend or 

“play.”  This treatment is common in the petroleum engineering literature and our use 

follows the standard assumptions.9  Indeed, White (1992) defines the concept of an 

exploration play as a group of prospects that share common elements of risk. 

 Let the random vector {Z0 , Z1, …, ZN} represent a set of latent geological factors 

that collectively determine exploratory success.  Zi =1 denotes the presence of a 
                                                 
8 Examples include positive association, affiliation, positive quadrant dependence, right-tail increasing in 
sequence, etc.  Colangelo, Scarsini, and Shaked (2005) provide an overview of alternative measures.   
9 See, for example, Megill (1979), Stabell (2000), and Wang et. al. (2000). 
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necessary factor and Zi = 0 denotes its absence.  We assume these geological factors are 

distributed independently, with: 

 p(Zi=1) = qi; for i = 0, 1, ..., N; 

Successful exploration of the ith prospect requires the presence of factor Z0 (the common 

factor) and factor Zi (the factor unique to the ith prospect).  The common factor could 

represent, for example, the original depositional event that created petroliferous 

sediments that would have charged the play, whereas the unique factor could represent 

the existence of a migratory path to the ith prospect and the existence of a trapping 

structure sufficient to form a reservoir there.  This allows us to write:  Si = Z0×Zi; for i = 

1, ..., N.10  Since the factors are assumed to be independent, the marginal probability of 

success on the ith prospect is given by: 

 pi = p(Si=1) = q0qi. (1) 

Since prospects are assumed to be symmetric, we suppress the subscript on the prospect-

specific risk factor and write qi = q and thus pi = p, for i = 1, …, N.  Note that q is an 

upper bound for p, attained only when q0 = 1 (i.e., no shared risk), and q also represents 

the conditional probability of success on any given prospect given that success has 

occurred on another. 

 It will be convenient to use “bar notation” for conditional probabilities.  Thus: 

 j|ip  =  Pr(Si=1|Sj=1)  

                                                 
10 Although we focus on petroleum exploration, the partially-shared risk structure is arguably relevant to a 
broader range of multi-prospect problems.  Consider, for example, the problem of introducing a new 
product in a set of test markets.  If we suppose that success in any one market requires validity of the 
underlying value proposition (presumed common to all markets) plus effective execution of the test 
program in that particular locale, then the same type of information spillovers would emanate from a series 
of test marketing results as from a series of exploratory wells.  Kester’s (1993) example of new product 
introductions appears to fit this mold.  Spillovers of underwriting information in the IPO model of 
Benveniste et. al. (2003) represent another example of a shared risk that is partially resolved by the first 
project. 
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  =  )1F1F(p/)1F1F1F(p j0ji0 =∩==∩=∩=   =  q0q2/q0q  =  q. (2) 

Similarly: 

 
j|i

p  =  Pr(Si=1|Sj=0)  =  ( )
p1
q1p

−
− , (3) 

where the last equality follows from the identity:  
j|ij|i p)p1(ppp ×−+×= . 

The covariance between any two exploration outcomes is given by p(q-p), and the simple 

correlation coefficient between any two outcomes takes the form: 

 
p1
pqr

−
−

= . (4) 

Positive dependence implies q > p, therefore all outcomes are positively correlated.  As q 

varies between p (the marginal probability) and 1, the correlation coefficient varies 

between zero and unity.  Either q or r may be used to indicate the degree of dependence 

among prospects.  Depending on the context, it will sometimes be more convenient to 

work with one measure of dependence than the other, but any result can easily be restated 

in terms of the other parameter. 

 We will have occasion to use two additional properties of the shared-risk 

information structure (proofs are provided in the appendix): 

(P1)  Only one exploratory success is sufficient to confirm the presence of the 
common factor;  Thus, once an exploratory success has occurred, the conditional 
probability of success on remaining prospects rises to q, and remains there 
regardless of ensuing outcomes.   
 
(P2)  A string of n consecutive failures reduces the conditional probability of 
success on remaining prospects by at least as much as any other string of n or 
fewer outcomes.  Nothing is more discouraging than a streak of consecutive 
failures, except an even longer streak of consecutive failures. 
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4.  The Risk-Neutral Case 

 It follows immediately from Property 1 that the agent would exercise the option to 

truncate exploration only after experiencing a sequence of some n consecutive failures 

(and no successes).  To reckon the value of the portfolio, then, we must examine the 

implications of such a stopping rule.  For n = 1, …, N-1, we let the random variable Π[n] 

represent the realized value of the portfolio given that exploration will be truncated only 

after a sequence of n failures in n trials.  Relative to the passive policy of drilling all 

prospects, this stopping rule trims branches and outcomes of the investment decision tree.  

By taking directly into account those branches that would be trimmed under the given 

stopping rule, we can express the expected value of the portfolio, subject to the given 

stopping rule, as follows:   

 [ ] ( )∑
+=

−×−Π=Π
N

1nj
n,...,1|jn,...,1

0]n[ 1Vpp][EE  

    ( ) ( )nNpVnNp][E
n,...,11n,n,...,1

0 −+−×−Π=
+

 

    ( ) ( ) ( )nNpVnNq1p][E
n,...,1

n0 −+−−−Π= , (5) 

where E[Π0] represents the expected value under the passive policy of exploring all 

prospects, and where we have used symmetry to make the substitution 
n...1|jn...1|1n

pp =
+

 for 

all j ≥ n+1.  The probability of no successes in n trials can be written as (see appendix): 

 ( )[ ]n
n...1

q11
q
p1p −−−= . (6) 

which is strictly increasing in q.  It follows by inspection of (5) that E[Π[n]] is strictly 

increasing in q for fixed n = 1, …, N-1.  The policy of truncating after n failures becomes 

more profitable as the degree of dependence rises. 
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 Recall that for q = p (i.e., independent prospects), the investor would explore all N 

prospects, even if the first N-1 were unsuccessful.  As q rises above p (which means the 

degree of dependence rises above zero), the value of information spillovers rises too, 

until at some point a threshold is reached, at which point the weight of N-1 previous 

failures would be just sufficient to dissuade the investor from exploring the Nth prospect.  

This threshold (qOV > p) for invoking the option to truncate exploration (which we call 

the “option threshold”) is obtained as the solution to the following equation:  E[Π[Ν−1]] = 

E[Π0], which may be expressed using Eq. (5) as follows:   

 
V
1p

1N...1|N
=

−
. (7) 

Note that at q = p, the LHS of (7) equals p, which is greater than 1/V (since pV > 1).  

And, at q = 1, the LHS equals 0, which is less than 1/V.  Moreover, the LHS is strictly 

decreasing in q, which ensures that a unique solution exists for qOV.  To be clear, given q 

= qOV, it would not be optimal to truncate after any fewer number of failures than N-1 

since (by Property 2) V/1pp
1N...1|N1k...1|k
=>

−−
 for all k < N.   

 The relationship between the option threshold and N is also of interest.  Holding q 

fixed, the LHS of Eq. (7) is a decreasing function of N (by Property 2), thus qOV must 

itself be a decreasing function of the number of prospects included in the portfolio.  That 

means the special case of N=2 provides an upper bound on the option threshold for 

arbitrary N.  Given N=2, Eq. (7) reduces to: 

 
V
1p

p1
q1 OV

=
−
− , 

which implies: 
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V
1

pV
11qOV +−= . (8) 

In terms of correlation, the option threshold can be expressed by substituting from 

Equation (8) into (4): 

 
pV

1pV
p1

pqr
OV

OV −
=

−
−

= , (9) 

which is a particularly intuitive result since the option threshold in this case happens to 

correspond to the expected profit margin (in percentage terms) of the prospects under 

consideration (recall that the cost of exploration is taken to be 1).  If prospects offer only 

a small return over the cost of exploration, then relatively little correlation among 

prospects is needed for a string of consecutive failures to condemn the last remaining 

prospect.  Figure 1 gives exact values of the option threshold (i.e., the solution to Eq. 7) 

for a broad range of assumed profit margins and values of N. 

 Gathering results developed thus far establishes the following: 

Proposition 1:  for N ≥ 2, fixed p, and r ≥ rOV, any increase in dependence among 

prospects increases the expected value of the portfolio. 

Proof:  Since the degree of dependence is assumed to exceed the option threshold, the 

expected value of the portfolio may be written as: 

 E[Π*]  =  max {E[Π[1]], …, E[Π[N-1]]}.   

We have shown already that each term of the set {E[Π[n]]} is strictly increasing in q.  It 

follows immediately that E[Π*] is itself strictly increasing in q.  QED 

Discussion:  Proposition 1 implies that risk-neutral investors should exhibit “plunging” 

behavior:  once beyond the threshold, more dependence is preferred to less.  As long as 

dependence is high enough to meet the option threshold, the value of the portfolio is 
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maximized by selecting from available prospects those that are most highly correlated.  

For risk-neutral investors, then, the option threshold is a “plunging” threshold. 

 We turn to a second threshold that is of some importance.  If dependence is high 

enough, the investor would walk away after failing on the very first trial.  The “walk 

away threshold” (qWA) is defined to be that level of dependence that would make the 

investor indifferent about exploring a second prospect after failing on the first.  Thus, 

holding p, V, and N constant, qWA is obtained as the root of the equation: 

 E[Π[2]]  =  E[Π[1]]. 

After substituting from Eq. (5), and rearranging terms, the condition defining qWA 

simplifies to: 

 
)1qV)(2N(V

1p
1|2 −−+

= . (10) 

The LHS of this equation decreases linearly in q, per Eq. (3), whereas the RHS is 

decreasing and convex.  Thus, at most two roots exist.  Moreover, at q = p, the LHS 

equals p, which exceeds the RHS (since pV > 1), while at q = 1, the LHS equals 0, which 

is less than the RHS.  It follows that a single root exists between q and 1, and qWA is 

therefore uniquely defined.  In addition, for fixed q, the RHS is decreasing in N, whereas 

the LHS is constant.  Thus, qWA is increasing in N.  It takes more dependence to walk 

away on the basis of a single failure from a larger number of unexplored prospects.  The 

case of N=2 therefore provides a lower bound for qWA.  But, with only two prospects, by 

definition the two thresholds correspond:  qOV = qWA.  Thus, for the special case of N = 2, 

we are able to write (cf. Equation (9)):   

 WAOV r
pV

1pVr =
−

= ; 
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and for the general case of N > 2: 

 WAOV r
pV

1pVr <
−

< . 

5.  The Impact of Risk Aversion 

 Although dependence increases the volatility of exploration outcomes and 

“increases risk” in that sense, risk aversion on the part of the investor does not translate 

directly into aversion to dependence.  Indeed the tendency for risk averse investors to 

plunge into dependence can be even greater than for risk neutral investors.  The question 

is whether the option to truncate exploration creates enough value to compensate the 

investor for the added risk that dependence brings.  As a general matter, this will depend 

on the investor’s degree of aversion to risk and the answer may go either way.  However, 

in certain cases, the option to truncate actually reduces the dispersion of monetary returns 

(overcoming the increase in variance of exploration outcomes), in addition to increasing 

the mean, and in such cases risk-aversion would necessarily heighten an investor’s 

preference for dependent prospects.  Whether a risk-averse investor would prefer 

dependence at all, or perhaps to an even greater extent than would a risk-neutral investor, 

depends on the details of the problem.  But, the impact of risk aversion and other 

background parameters on portfolio choice is systematic and can be described quite 

simply with reference to the special case of N = 2.  Extensions for the case of N > 2 are 

presented in the Appendix. 

The Two-Prospect Case (N = 2) 

 With only two prospects, and for given values of p and q, the monetary return to 

the passive strategy (all prospects being explored regardless) is denoted Π°(p,q), with 

probability distribution determined from the decision tree shown in the upper panel of 
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Figure 2.  Under the alternative policy of truncating exploration if the first prospect fails, 

the monetary return is denoted Π[1](p,q), with distribution determined from the decision 

tree in the lower panel of Figure 2.  Given that the investor would elect to truncate after 

the first failure, but otherwise irrespective of the investor’s risk preference, we show that 

more dependence is preferred to less: 

Proposition 2:  For N=2, fixed p, and rb > ra > rOV; 

 Π[1](p,qb) 
sd
f  Π[1](p,qa), (11) 

where 
sd
f  denotes first-order stochastic dominance.  

Proof:  See appendix.11 

 The investor’s preference for higher dependence is due to the higher quality of 

information that spills over.  If the second prospect is condemned after failing on the first, 

the investor saves the cost of exploration, which is 1; but also foregoes the (diminished) 

expected revenue that comes from exploring the second.  Reducing the probability of 

false negatives increases the value of information—which in turn increases the value of 

the portfolio.  Using Eq. (3), the probability of a false negative can be expressed in terms 

of the correlation: 

 ( )r1pp
1|2

−= . (12) 

Thus, if the agent is able to assemble prospects with enough dependence to surpass the 

option threshold, then he would prefer that portfolio of dependent prospects to a 

comparable portfolio of independent prospects, and would take as much dependence as 

possible in order to enhance the quality of the information on which he acts. 

                                                 
11 Proposition 2 generalizes easily to the case of N > 2.  A proof of the general case is provided in the 
appendix. 
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 We have previously characterized rOV, the option threshold for a risk-neutral 

investor (see Eq. 9).  We now let rRA represent the option threshold of the risk averse 

investor; i.e., the degree of dependence just sufficient to render him indifferent about 

exploring the second prospect after failing on the first.  Of course, the numeric value of 

rRA will depend on the degree of risk aversion, and we will come to that.  However, it 

follows from the results given so far that, compared to the alternative of independent 

prospects, any amount of dependence below rRA is unambiguously bad.  Regardless of the 

degree of risk aversion, the investor would not assemble a portfolio of prospects with 0 < 

r < rRA, at least not if it were possible to assemble a similar set of independent prospects 

instead.  Below the option threshold, dependence inflates the variance, but not the mean.   

 Above the option threshold, more dependence is always preferred to less (see 

Proposition 2).  Thus, for the N = 2 case, regardless of the degree of risk aversion, the 

investor will exhibit “plunging” behavior:  either shunning correlation completely (by 

pursuing a geologically diversified set of prospects), or maximizing the degree of 

correlation (by pursuing prospects that are as highly dependent as the geology permits). 

 Risk-averse and risk-neutral agents are distinguished not by the plunging 

phenomenon itself, but by the threshold level of correlation that triggers this response.  

As we show next, the threshold of risk-averse agents may lie either above or below that 

of risk-neutral agents. 

 The risk-averse option threshold is derived by comparing financial returns under 

the alternative truncation policies.  Under the passive policy, in which all prospects are 

explored regardless, the return has mean and variance given by: 

 E[Π°(p,q)] = 2(pV−1) (13a) 
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 Var[Π°(p,q)] = 2pV2(1−2p+q). (13b) 

With p constant, the mean return is invariant with respect to q, but the variance increases 

linearly with q, and therefore also with r.  With truncation after one failure, the mean and 

variance are both affected.  The mean is: 

 E[Π[1](p,q)] = pV – 1 + p(qV-1), (14a) 

which increases linearly with q, and therefore also with r.  The variance is: 

 Var[Π[1](p,q)] = pq(3V2-4V) + p(V2-4V+3) +1 – [pV-1+p(qV-1)]2, (14b) 

which may either rise or fall with q, depending on the parameter values.  At the option 

threshold, the investor must be indifferent between the portfolio of independent prospects 

(Equations 13a and 13b evaluated at q=p), and the portfolio of dependent prospects 

(Equations 14a and 14b evaluated at q = qRA).  A comparison of these equations 

establishes that the option threshold for a risk-averse investor may lie either above or 

below that of the risk-neutral investor, depending on the characteristics of prospects: 

Proposition 3:  For N = 2 and fixed values of p and V: 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=−⇔=

<

>

<

>

V
11

2
11pVrr OVRA  (15) 

Proof:  See appendix. 

Discussion:  Either type of investor (risk-neutral or risk-averse) has an incentive to 

plunge into dependence if there is enough geological dependence among available 

prospects to surpass the investor’s threshold.  Other things being equal, the lower the 

option threshold, the more likely it is that the investor would plunge since any given set 

of available prospects would be more likely to meet the lower threshold.  Figure 3 

illustrates the difference between risk-neutral and risk-averse investors in terms of the 
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plunging threshold.  The diagram partitions the parameter space into regions where rRA is 

respectively greater than or less than rOV—as determined by Eq. (15).  Notice that the 

LHS of the criterion in (15) is just the intrinsic rate of return (pV-1) for a single prospect; 

whereas the RHS depends only on V.  The combination of a relatively high V (which 

implies large prospects) but low expected rate of return (which together with high V 

implies low p) pushes rRA below rOV, and therefore makes a risk-averse investor more 

likely to plunge than a risk-neutral investor.  This is the circumstance that is most 

characteristic of petroluem exploration prospects in the U.S., where commercial deposits 

are large in absolute terms relative to the cost of discovery, but with low probabilities of 

success that keep the expected rate of return low.  In Figure 3, we have plotted a point 

that represents typical U.S. conditions, as reported by Stiglitz (1975, pp. 71-72).  It falls 

well below the frontier, which means that risk-averse investors should exhibit a lower 

threshold for plunging into concentrated holdings.12  Accordingly, in the next section we 

test the hypothesis that risk-averse investors pursue less-diversified (more concentrated) 

holdings than do risk-neutral investors. 

6.  Empirical Evidence 

We now turn to some empirical evidence that charts the revealed preference of actual 

oil companies in the process of assembling portfolios of exploration prospects.  Since 

1954, the U.S. Government has periodically auctioned rights to explore for petroleum on 

designated offshore tracts located on the Outer Continental Shelf (OCS).  A typical 

auction (lease sale) includes numerous tracts, from which each company must select 

                                                 
12 Some widely-quoted estimates of the rate of return to U.S. exploration are even lower than the figure 
calculated by Stiglitz.  For example, McDonald (1970, pp. 115) puts the return at 14.5%, whereas Mead, et. 
al. (1983, p. 41) estimate that wildcat exploration conducted specifically on the OCS has earned a rate of 
return of 12.3%. 
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individual properties on which to bid.  Exploration rights on more than 24,000 tracts have 

been awarded via this process.  The total value of all bids tendered since 1954 exceeds 

$135 billion, of which the high (winning) bids amount to some $64 billion (unadjusted 

for inflation).13  Initially, the OCS auctions were conducted by the U.S. Geological 

Survey (USGS), but administrative responsibility passed to the newly created Minerals 

Management Service (MMS) in 1982.  Although there have been numerous changes to 

the rules and procedures over the years; these auctions have long been, and remain today, 

an active and economically significant market which is used regularly by oil and gas 

companies to assemble and replenish their exploration portfolios. 

We examine these data to measure the extent to which companies systematically 

pursue geologically dependent prospects, rather than diversified holdings; and to assess 

the extent to which risk-averse and risk-neutral companies differ in this regard.  The data 

set is rich in terms of the number and types of auction participants, ranging from some of 

the very smallest, privately-held companies to the large multinational firms that dominate 

the petroleum industry.  The marked heterogeneity among participants affords an 

opportunity to examine the impact of variations in the degree of risk aversion on portfolio 

preferences, which goes to the heart of our theory.   

We focus on five specific lease sales.  This may seem a small and perhaps 

unrepresentative sample, given that 140 separate sales have been conducted in all.  

However, the five in question are among the largest and most auspicious lease sales ever 

to have been held, and in several critical respects they are uniquely suited to our purpose.  

The five sales all took place between June 1973 and October 1974, at the very height of 

                                                 
13 Detailed sale statistics are available in “Outer Continental Shelf Lease Sale Statistics,” Patricia Bryars, 
Office of Leasing and Environment, Gulf of Mexico OCS Regional Office, U.S. Minerals Management 
Service, January 3, 2005. 
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concern over future petroleum supplies, and all five were categorized as “wildcat” 

sales—which means that no companies had yet been given a chance to conduct test 

drilling in the vicinity of these tracts, and therefore that no participants had accumulated 

much proprietary information of a type that would be difficult for us to identify or control 

in the ensuing statistical analysis.  Even more decisive for purposes of sample selection is 

the fact that for each of these five lease sales, and for no others that we know of, there 

existed a classification scheme by which the USGS identified groups of tracts associated 

with common geological structures and shared risk factors.  With this information, we 

can distinguish holdings that are geologically diversified from those that are 

concentrated.   

Table 1 summarizes the five sales.  Overall, a total of 582 tracts drew bids.  The 

number of participants (bidders) varied between 51 and 82 per sale, and the average 

participant tendered 17.3 bids per sale.14  Regarding the scope of geological spillovers 

and shared risk factors, the 582 tracts were spread across 193 distinct geological 

structures, giving on average 3 tracts per structure.  We shall refer to a set of tracts that 

are associated with a common geological structure as a “group” of related tracts.  The 

number of such groups varies between 11 and 65 per sale, and the number of tracts per 

group varies between 1 and 33.  With this array of tracts on offer, participants in each 

auction could have pursued either a concentrated or diversified portfolio of exploration 

prospects, according to their preference.  

                                                 
14 Bids may be tendered either individually (solo bids), or as part of a bidding consortium (joint bids).  To 
be clear, the average bidder participated, via either solo or joint tenders, in 17.8 bids per sale. 
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Companies Deliberately Pursue Concentrated Holdings 

We want a measure of portfolio composition that reveals the degree of concentration 

chosen by the bidder, to be compared to a null benchmark that reflects random selection.  

To this end, we employ the concept of “entropy” to measure the extent of concentration; 

i.e., the degree to which elements of a set (e.g., a company’s portfolio of exploration 

prospects) are subdivided into discernable parts.  Theil (1967, 1972) suggests entropy as 

a measure of racial diversity within schools and industrial diversification within cities.  

Entropy is also often used as a measure of diversity in the distribution of per capita 

income.  These applications, however, have not treated entropy as a decision variable 

and, as pointed out by Theil, the statistical properties of entropy as a random variable 

have received little attention. 

The relationship between tract selection and entropy is as follows:  Let N represent 

the total number of tracts offered in a given sale, and assume these are sub-divided into K 

geological groups.  Also assume that an individual participant chooses to bid on a given 

subset of n tracts (n ≤ N).  If we let {p1, …, pK} represent the proportion of the bidder’s n 

tracts that belong to each respective group, the entropy (e) of the bidder’s prospect 

portfolio is then given by: 

( )∑
=

≡
K

1k
kk p/1lnpe  (16) 

The {pk} reflect the participant’s selected exposure to each geological group.  

Minimum entropy is obtained if all exposure is concentrated on only one group (pk = 1 

for one particular k, else pk = 0), in which case e = 0.  A portfolio of geologically 

concentrated prospects is therefore signified by a relatively low entropy measure.  

Maximum entropy is obtained when exposure is spread uniformly across all groups (pk = 
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1/K for all k), in which case e = ln(K).  Thus, a portfolio of geologically diversified 

prospects is signified by a relatively high entropy measure.  High entropy signifies 

diversification; low entropy signifies concentration. 

To establish a benchmark that distinguishes concentrated from diversified portfolios, 

we simulate the placement of bids under the assumption that tract selection is random and 

without replacement.  For a particular realization of the random placement of n bids 

among all N tracts available in a given sale, we can calculate (by reference to the 

underlying geological groups for the given sale) the corresponding value of e.  By 

repeating this simulation 100 times, we obtain an empirical frequency distribution of e 

under the maintained hypothesis that a participant’s n bids were spread randomly across 

the N offered tracts.  For a given lease sale, we repeat this process for each n ranging 

between 1 and N; which allows us to compute the expected entropy and its variance for 

any participant in the lease sale, depending on the total number of bids placed by that 

participant, and assuming of course that tracts are selected randomly.   

Relative to the random placement benchmark, we can say the following: 

(1) A bidder who deliberately attempts to diversify holdings should exhibit, on 

average, higher entropy than random selection because deliberate efforts would eliminate 

some of the random concentration of bids on particular geological groups that would 

otherwise occur. 

(2) A bidder who deliberately attempts to concentrate holdings should exhibit, on 

average, lower entropy than random selection because deliberate efforts would eliminate 

some of the random scattering of bids across geological groups that would otherwise 

occur. 
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The results of these entropy calculations for each of the five lease sales are displayed 

in Figure 4, which charts the observed entropy of each bidder’s actual tract selections 

(red dots) relative to the benchmark (solid blue line).  The blue line represents the 

simulated median entropy level, which depends on the number of tracts offered in a given 

sale, their arrangement into geological groups, and the number of bids placed by the 

individual bidder in the given sale.  If bidders had in fact selected tracts randomly, then 

50% of all bidders should fall below the median level of entropy.  In fact, 88% of all 

bidders fall below the median, and this tendency is consistent across all five sales.  Thus, 

the large majority of firms assembled prospect portfolios that tended to be geologically 

concentrated rather than diversified. 

We also show the lower 5% cut-off point of the simulated entropy distribution 

(dashed green line).  If bidders had in fact selected tracts randomly, then only 5% of all 

bidders would fall into this lower tail of the distribution.  In reality, 49% fall into the 

lower tail, and this tendency is consistent across all five sales.  This suggests that the 

levels of concentration attained by many bidders are unlikely to have occurred by chance 

(i.e., via random placement of bids). 

To gauge the significance of these apparent departures from random selection, we 

conduct t-tests for the percentage of actual bidder entropies that fall below the median 

and 5% cut-off points (see Table 2).  The reported t-ratios are based on the null 

hypothesis of random tract selection, which assigns a 50% probability to any one bidder 

falling below the median, and 5% to falling in the lower tail.  The probability that any 

given number of bidders fall below the specified limit in a particular sale is therefore 

given by the binomial distribution.  Each reported t-ratio is calculated as the observed 
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percentage of bidders below the given limit, minus the expected percentage, divided by 

the binomial standard deviation.15  As indicated by the large t-values shown in the table, 

we can strongly reject the null hypothesis of random tract selection in favor of the 

hypothesis that bidders have deliberately assembled prospect inventories that are 

concentrated into groups of geologically-related tracts.   

Risk Aversion Intensifies Plunging Behavior 

These results suggest that information spillovers are a material aspect of the 

exploration process, and that companies attempt to exploit the value of such spillovers by 

pursuing prospects that are geologically concentrated rather than diversified.16  It is also 

true, however, that potential economies of proximity in the cost of evaluating and 

appraising adjacent tracts provide an incentive for concentration.17  Neutralizing this 

influence requires a bifurcation of the sample on the basis of risk aversion.  Where there 

is concentration due to information spillovers, the effect should be greatest within more 

risk averse firms.  Concentration driven by economies of joint production seems 

unrelated to risk tolerance.   

We examine whether risk aversion plays a role in bid concentration by contrasting the 

behavior of public and private bidders.  If privately-held companies are more risk-averse 

                                                 
15 To be conservative, in these tests we have ignored those few bidders who placed only one bid in a given 
sale, since their measured entropy level will be zero by default.  The standard deviation is recalculated for 
each auction and test based on the number of bidders participating in the sale and the probability of being 
below the cut point under the null hypothesis of random bidding. 
16 It is possible, of course, that a secondary market in exploration information might develop, in which case 
the company could purchase or sell information regarding related prospects.  In fact, exploration results 
tend to be closely held within the industry, and not freely marketed, which may reflect the high cost of 
conveying to potential rivals credible and complete information regarding exploration results.   
17 It is cheaper to conduct seismic surveys and to prepare and interpret geological maps over contiguous 
areas than scattered plots.   
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than publicly held companies,18 we should see one of two patterns in the data.  Where 

learning options are a significant factor in the selection of tracts, our theory predicts 

greater concentration in the bid portfolios of privately-owned companies.  If learning 

options are absent, one would predict that more risk-averse firms should pursue less 

concentrated strategies in the pursuit of traditional diversification.   Thus finding a 

significantly higher bid concentration for private firms rejects the hypothesis that learning 

options are irrelevant in the choice of bid portfolios.   

After dividing the sample, the entropy of each portfolio (77 assembled by private 

companies, and 264 assembled by public companies) was then measured and normalized 

by dividing by the median entropy level from the simulated random selection of tracts.  

The resulting ratio measures the percentage by which a given portfolio deviates (in the 

direction of concentration) from random selection.  By this measure, we find that the 

portfolios assembled by private firms are significantly more concentrated than the 

portfolios of public firms.  These results are summarized in Table 3.  As we showed 

earlier, virtually all portfolios are concentrated to some degree, but the portfolios of 

privately-owned companies are more concentrated, and this difference is statistically 

significant at the 1% level.  We interpret this result to mean that, although economies in 

the appraisal of adjacent tracts may provide an incentive for concentration, the value of 

learning options provides, as predicted, a differential incentive for concentration that is 

discernable in the data. 

                                                 
18 Within a privately-held company, exploration risk represents a non-diversifiable risk that may constitute 
a large portion of the owner’s wealth.  Kaufman and Mattar (2003) refer to this as “private risk.”  See also 
Stiglitz (1975) for more discussion of risk aversion and market valuation of publicly held oil companies.  
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7.  Summary and Conclusions 

 Our most basic finding regarding a portfolio of exploration prospects is that the 

value of the whole may exceed the sum of its parts—a result that is due to the option 

value associated with information spillovers.  The value of these options creates an 

incentive for companies to assemble highly concentrated portfolios of exploration 

prospects.  Theoretically, we showed that, under conditions typical of U.S. exploration, 

the incentive to plunge into concentrated holdings is even greater for risk-averse 

companies than for risk-neutral companies.  And empirically, we showed that risk-averse 

companies have attempted to acquire more concentrated holdings than risk-neutral 

companies. 

 No part of the intuition behind our results is specific to the petroleum industry or 

the “shared risk” information structure we have employed.  Although that model mimics 

(in a crude way) the geological source and pattern of dependence in the case of petroleum 

deposits, other forms of positive dependence would lead us in the same direction and 

towards the same types of conclusions.  Any investor in assets that may be exploited 

sequentially faces a tradeoff between:  (a) loading his portfolio with assets whose returns 

are correlated, which will impart a high variance to the total return, and (b) extracting 

value from the options that naturally arise due to the interdependence among assets.  

Loosely speaking, we can say that the value of the options increases with the strength of 

dependence among assets, so it should not come as a surprise that even risk-averse 

investors might have a preference for dependence. 
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Figure 1a:  Risk Neutral Option Thresholds 

(assuming p = 0.15) 
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Figure 1b:  Risk Neutral Option Thresholds 

(assuming p = 0.50) 
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Figure 2:  Exploration Decision Tree 

a.  The Naïve Exploration Program 

 

b.  The Truncated Exploration Program 
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Figure 3:  The Option Threshold: 

Risk-Averse vs. Risk-Neutral Investors (N = 2) 
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Above the frontier, risk aversion decreases the propensity to plunge into 
dependent prospects.  Below the frontier, risk aversion increases the propensity to 
plunge.  Typical exploration prospects in the U.S. (see Stiglitz, 1975, p. 72) fall 
well below the frontier, which means that risk averse investors are more likely to 
plunge than are risk neutral investors. 
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Figure 4: 

 
Observed Entropy of Prospect Portfolios, Compared to Simulated Random Entropy 
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26 32 33 34 36
Date: 6/19/1973 12/20/1973 3/28/1974 5/29/1974 10/16/1974

Location: La/Tx MAFla La Tx La
Number of Geological Groups: 24 11 48 45 65

Number of Tracts Bid Upon: 99 89 114 123 157
Number of Tracts per Group:

Min 1 2 1 1 1
Max 10 33 9 10 10
Avg 4.1 8.1 2.4 2.7 2.4

Total Number of Bidders: 76 51 82 77 80
Average Number of Bids/Bidder: 24.5 20.0 17.4 12.6 13.3

Total Number of Bids: 1,861 1,019 1,424 973 1,062

Table 1
Summary of OCS Sales Included in the Analysis

 

 
 
 

OCS Number Observed Expected
Sale Below Percent Percent t-statistic
26 68 of 73 93% 50% 7.37 **
32 43 of 50 86% 50% 5.09 **
33 63 of 73 86% 50% 6.20 **
34 63 of 72 88% 50% 6.36 **
36 64 of 74 86% 50% 6.28 **

B.  Observed Entropies Relative to the Simulated Lower Tail (5%)

OCS Number Observed Expected
Sale Below Percent Percent t-statistic
26 36 of 73 49% 5% 17.37 **
32 17 of 50 34% 5% 9.41 **
33 44 of 73 60% 5% 21.67 **
34 28 of 72 39% 5% 13.19 **
36 44 of 74 59% 5% 21.50 **

** significant at the 1% level (two-sided)

The tests count the number of bidders with entropy below the
selected cutoff point.  The possible number (N) is the number of
bidders who placed more than one bid in the given sale.  The
t-statistic = (observed % - expected %)/sqrt(Npq), where p =
the expected % below, and q = 1-p.

Table 2
Binomial Tests for Low Entropy (Concentration)

A.  Observed Entropies Relative to the Simulated Median

 
 



  37 

Table 3 
 

Combined Number of Bidders in all Sales: 341
Combined Number of Public Bidders, Npublic: 264
Combined Number of Private Bidders, Nprivate: 77

Common Standard Deviation of Entropy Ratios σ: 0.297

Mean Entropy Ratio for Public Bidders (Mpublic): 0.856
Mean Entropy Ratio fo Private Bidders (Mprivate): 0.766

T-ratio for Common Mean assuming independence: 2.329 **

A bidder's entropy ratio is the ratio of actual entropy to median 
entropy of the same number of randomly placed bids.

** Significant at the 1% level (one-sided).

Test of Equal Concentration
By Private and Public Companies

privatepublic

privatepublic

NN

MM
T

11^
+⋅

−
=

σ
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APPENDIX 

Property 1:  Once an exploratory success has occurred, the conditional probability of 

success on remaining prospects rises to q and remains there regardless of ensuing 

outcomes. 

Proof:  Consider the probability of success on the nth prospect, conditional on m 

successes and n-m-1 failures having already occurred, where 1 ≤ m ≤ n-1: 

[ ]0S...0S1S...1S|1SPrp 1n1mm1n1n...1m;m...1|n
=∩∩=∩=∩∩=== −+−+

. (A1) 

Since the random variables are assumed to be exchangeable, the conditional probability is 

invariant with respect to the order of prior outcomes, so for notational convenience (and 

without loss of generality) we have assumed the successes occur first.  The conditional 

probability would be the same for any permutation of these prior outcomes.  Based on the 

independence of the underlying factors (Z0, Z1, …, ZN), and the conditions for success on 

each prospect, Equation (A1) can be written as: 

[ ]
[ ]10Z...0Z1Z...1Z1ZPr

1Z0Z...0Z1Z...1Z1ZPr
p

1n1mm10

n1n1mm10
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−××−××××
×−××−××××

 

 =    q
)q1(qq
)q1(qq

1mnm
0

1mn1m
0 =

−××
−××

−−

−−+

, (A2) 

which is independent of m and n-m.  QED 

Property 2:  A string of n consecutive failures reduces the conditional probability of 

success on remaining prospects by at least as much as any other string of n or fewer 

outcomes. 
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Proof:  Since the conditional probability of success given any prior success is simply q 

(see Property 1), it is only necessary to examine the ratio of conditional probabilities 

given sequences of consecutive failures.  For arbitrary k≥2, Bayes Theorem allows us to 

write: 

[ ] [ ]
[ ]0S...0SPr

1SPr1S|0S...0SPr
p

1k1

kk1k1
1k...1|k =∩∩=

=×==∩∩=
=

−

−
−

 

 
( )

[ ]0S...0SPr
qqq1

1k1

0
k

=∩∩=
××−

=
−

, (A3) 

where we have used Property 1 to simplify the numerator.  Then, by repeating this 

operation for k+1, and taking the ratio of conditional probabilities, we have: 

[ ] ( )
[ ] ( ) 0

k
k1

0
1k

1k1

1k...1|k

k...1|1k

qqq10S...0SPr
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p1
q1

−
−
−

= ,  (A4) 

which will be less than one if and only if:  qp
1k...1|k
<

−
.  For k=2, Bayes Theorem implies:  

q
p1

p)q1(
p

pp
p

1

22|1
1|2

<
−
−

== , where the inequality follows from p < q.  Thus, 

qpp
1|221|3
<< .  Higher order comparisons can then be established by recursion.  QED 

The Probability of No Success in n Trials: 

 Obtaining no success (in n trials) is complementary to the event of obtaining one 

or more: 

 ( )∑
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⎞
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Proposition 2:  (Generalization)  For N ≥ 2, fixed p, and rb > ra > rOV: 

 Π[1](p,qb)  
sd
f   Π[1](p,qa), 

where 
sd
f  denotes first-order stochastic dominance. 

Proof:  Since we assume rb > ra > rOV, it follows that qb > qa > qOV.  If we denote the 

cumulative distribution function of Π[1](p,q) by G[1](·|p,q), it is then sufficient to show 

that G[1](·|p,qb) ≤ G[1](·|p,qa) for all qa and qb such that qa < qb.  G[1](·|p,q) describes the 

distribution of returns if exploration is truncated after failing on the first prospect.  The 

probability of this outcome is 1−p, and it generates total payoff equal to –1.  If the first 

prospect is successful then all prospects will be explored, and if there are n successes in 

total (out of N prospects) the total payoff will amount to nV-N.  Given success on the 

first prospect, the probability of success on each subsequent prospect is simply q.  This 

allows us to write down the entire probability distribution of outcomes, where g(Π) 

represents the probability of outcome Π: 

 Π g(Π) 

 -1 1-p 

 V-N ( ) 1N0 q1q
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Each probability after the first is equal to the probability of success on the first prospect 

multiplied by the binomial probability of k-1 successes among the following N-1 

prospects.  For k = 1, …, N, the cumulative distribution function can therefore be written 

as: 

 G(kV-N|p,q) = (1–p)  +  p × B[k-1,N | q], where B[·|q] represents the 

cumulative binomial distribution.  Since the cumulative binomial distribution is known to 

exhibit first-degree stochastic dominance in q, then it must also be true that G(·|p,q) 

exhibits first-degree stochastic dominance in q.  QED 

Proposition 3:  For N = 2 and fixed values of p and V: 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=−⇔=

<

>

<

>

V
11

2
11pVrr OVRA  (A7) 

Proof:  We first establish that rRA is unique.  By definition, at r = rRA the investor is 

indifferent between the portfolio of independent prospects and the portfolio of dependent 

prospects.  But, regarding the portfolio of dependent prospects, higher values of r 
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stochastically dominate lower values (by Proposition 2).  Thus, indifference can be 

achieved only at one value of r.   

 Next, consider the value r = rOV, which is also unique (as shown previously in 

Section 3).  At rOV, the two portfolios (of independent and dependent prospects) have, by 

definition, the same expected value.  The difference in their variances is given by ∆: 

 ( )[ ] ( )[ ]p,pVarq,pVar oOV]1[ Π−Π=∆ . 

Thus, if ∆ is greater than (less than) 0, the portfolio of independent prospects would have 

the same mean but lesser (greater) variance, and therefore would be preferred to 

(dominated by) the portfolio dependent prospects with r = rOV.  Since rRA is defined as the 

point of indifference between these two portfolios, it follows immediately from 

Proposition 2 (stochastic dominance): 

 00rr OVRA

<

>

<

>

=∆⇔=− . (A8) 

Since the two portfolios share the same mean at q = qOV, ∆ is given by the difference in 

second moments measured around zero: 

 22OV2OV )1)(p1()2V)(q1(p)2V2(pq −−+−−+−=∆  

 ;)2()p1()2V)(p1(p2)2V2(p 22222 −−−−−−−−  (A9) 

where qOV = 
V
1

pV
11 +− .  After making this substitution and simplifying, we have: 

 ( )( )( ) ( )( )( ) ( )( )p43p12Vp2Vp12V2Vpp1 2121 −−−−−−+−−−=∆ −−  

 ( )( ) ( )( ) ( )p432Vp2V2V2Vp 2121 −−−−+−−∝ −−  

        1V3pV2 2 +−= ;  
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which, in view of Eq. (A8), leads directly to Eq. (A7).  QED 

Proposition 4:  Given N > 2 and fixed p; and if rRA is assumed to be unique, then: 

 00rr OVRA

<

>

<

>

=∆⇔=− , (A10) 

where all terms are as defined for the case of N = 2. 

Proof:  Since it is assumed that rRA is unique, then qRA must also be unique.  Consider the 

values rOV and qOV, which we showed earlier to be unique for all N.  Given qOV, by 

definition the two portfolios (of independent and dependent prospects, respectively) have 

the same expected value.  The difference in their variances is given by ∆: 

 [ ] [ ])p,p(Var)q,p(Var oOV]1[ Π−Π=∆ . 

Thus, if ∆ is greater than (less than) 0, the portfolio of independent prospects would have 

the same mean but smaller (greater) variance, and therefore would be preferred to 

(dominated by) the portfolio of dependent prospects with q = qOV.  But any investor 

would prefer Π0(p,p) to Π[1](p,p), and also prefer Π[1](p,1) to Π0(p,p).  Thus, if there is a 

single value q that renders the investor indifferent between Π0(p,p) and Π[1](p,q), then it 

must be the case that if ∆ is greater than (less than) 0, then qRA is greater than (less than) 

qOV.  QED 

 The principal distinction from the N=2 case is the possibility that, depending on 

the shape of the utility function, rRA may not be unique, in which case we offer 

Proposition 5, below.19  Of course, with N > 2, the partition of the parameter space 

induced by the condition ∆ = 0 generally deviates from that set forth in Eq. (A7).  

                                                 
19 As we showed earlier, the risk-neutral threshold (rOV) is unique for all N. 
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Nonetheless, Equation (A10) provides a necessary and sufficient condition for the option 

threshold of a risk-averse investor to fall below the risk-neutral threshold.  We emphasize 

that ∆ depends only on p and V.  Therefore, whether rRA lies above or below rOV is 

determined not by the degree of risk aversion, but only by the fundamental factors (p and 

V) that determine the intrinsic value of the prospects. 

 For problems where the risk-averse threshold is not unique, we will define rRA to 

be the least degree of dependence that leaves the risk-averse investor indifferent between 

dependent and independent prospects.  I.e., if the prospects were any less correlated, the 

investor would not truncate exploration even after N-1 consecutive failures.  Given this 

interpretation, we offer a sufficient (not necessary) condition for rRA < rOV (i.e., a 

sufficient condition for risk-averse investors to have a greater propensity to plunge): 

Proposition 5:  Given N > 2 and fixed p; and if rRA is understood to represent the least 

degree of dependence that renders the risk-averse investor indifferent between dependent 

and independent prospects, then: 

 OVRA rr0 <⇒<∆ . (A11) 

Proof:  The proof follows the same lines as for Proposition 4.  At qOV the two portfolios 

by definition have the same expected value.  The difference in their variances is ∆: 

 [ ] [ ])p,p(Var)q,p(Var oOV]1[ Π−Π=∆ . 

Thus, if ∆ is less than 0, the portfolio of dependent prospects with q=qOVwould have the 

same mean but smaller variance, and therefore would be preferred to the portfolio of 

independent prospects.  But any investor would prefer Π0(p,p) to Π[1](p,p).  Thus, the 
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least value of q that renders the investor indifferent between Π0(p,p) and Π[1](p,q), must 

lie between p and qOV.  QED 

 Finally, it is worth mentioning that, with N > 2, a risk-averse investor’s option 

threshold does not necessarily correspond to his plunging threshold.  Whereas the option 

threshold (rRA) represents the level of dependence below which the investor would prefer 

a portfolio of independent prospects, it does not follow that all portfolios with greater 

dependence than rRA would necessarily be preferred to rRA.  Compared to the case of N = 

2, the difference is that whereas Π[1] exhibits stochastic dominance in q, Π[N-1] does not.  

It is the latter that determines the option threshold (indifference regarding the Nth 

prospect after N-1 failures), but in the case of N = 2, the two coincide.  Thus, with N = 2, 

the preference for dependence is increasing beyond the option threshold, which provides 

the incentive to plunge. 

 With N > 2, the incentive for risk-averse investors to plunge still exists, but with a 

potentially higher threshold.  Call this plunging theshold rP.  To demonstrate that rP < 1, 

consider the following.  Given r = 1, no investor would continue beyond a first failure, 

which implies:  E[U(Π[n](p,1))] < E[U(Π[1](p,1))] for all n > 1.  By the continuity of the 

utility function in q, it follows that there exists an interval (1-ε,1) for which 

E[U(Π[n](p,q)] ≤ E[U(Π[1](p,q))] for all n > 1 and q ∈ (1-ε,1).  Moreover, the value r = 1 

represents perfect information, which any investor would prefer to r = 0.  Thus, 

E[U(Π0(p,p)] < E[U(Π[1](p,1))].  By the continuity of the utility function in q, it follows 

that there exists an interval (1-δ,1) for which E[U(Π0(p,p)] ≤ E[U(Π[1](p,q))] for all q ∈ 

(1-δ,1).  If we let rP = max(1-δ,1-ε), it then follows that: 

Proposition 6:  For fixed N > 2, fixed p, and rP < qa < qb: 
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 E[U(Π*(p,p))]  <  E[U(Π*(p,qa))]  <  E[U(Π*(p,qb))] (A12) 

Proof:  We have established already, for all q > rP,  that E[U(Π*(p,q))]  =  

E[U(Π[1](p,q))], and that E[U(Π0(p,p))]  =  E[U(Π*(p,p))]  <  E[U(Π[1](p,q))].  We have 

also shown that for given N > 2 and fixed p, Π[1](p,q) exhibits first-order stochastic 

dominance in q.  Equation (A12) then follows directly.  QED. 


